题目内容
【题目】已知函数
(I)讨论函数的单调性;
(II)设.如果对任意,,求的取值范围。
【答案】(1)当a≥0时,>0,故f(x)在(0,+)单调增加;
当a≤-1时,<0, 故f(x)在(0,+)单调减少;
当-1<a<0时,f(x)在(0,)单调增加,在(,+)
(2)a≤-2
【解析】
(Ⅰ) f(x)的定义域为(0,+),.
当a≥0时,>0,故f(x)在(0,+)单调增加;
当a≤-1时,<0, 故f(x)在(0,+)单调减少;
当-1<a<0时,令=0,解得x=.当x∈(0,)时,>0;
x∈(,+)时,<0, 故f(x)在(0,)单调增加,在(,+)单调减少.
(Ⅱ)不妨假设x1≥x2.由于a≤-2,故f(x)在(0,+)单调减少.
所以等价于
≥4x1-4x2,,即f(x2)+ 4x2≥f(x1)+ 4x1.
令g(x)=f(x)+4x,则+4=.
于是≤=≤0.
从而g(x)在(0,+)单调减少,故g(x1) ≤g(x2),
即f(x1)+ 4x1≤f(x2)+ 4x2,故对任意x1,x2∈(0,+) ,.
练习册系列答案
相关题目