题目内容
已知为的导函数,则的图像是( )
A
【解析】
试题分析:,所以。因为,所以为奇函数,图像应关于原点对称,则排除。又因为,排除。故正确。
考点:1导数;2函数奇偶性;3函数图像。
已知双曲线-=1(a>0,b>0)的左、右焦点分别为F1(-c,0)、F2(c,0).若双曲线上存在点P,使,则该双曲线的离心率的取值范围是________.
设分别是双曲线C:的左、右焦点,若双曲线右支上存在一点,使(为原点),且,则双曲线的离心率为 .
已知函数
(1)当时,求的最小值;
(2)在区间(1,2)内任取两个实数p,q,且p≠q,若不等式>1恒成立,求实数a的取值范围;
(3)求证:(其中)。
在平面直角坐标系xOy中,已知△ABC的顶点A(-6,0)和C(6,0),若顶点B在双曲线-=1的左支上,则=________.
如图甲是某条公共汽车线路收支差额与乘客量的图象(收支差额=车票收入—支出费用),由于目前本条线路亏损,公司有关人员提出了两条建议:建议(Ⅰ)是不改变车票价格,减少支出费用;建议(Ⅱ)是不改变支出费用,提高车票价格.下面给出四个图象:在这些图象中( )
A.①反映了建议(Ⅱ),③反映了建议(Ⅰ)
B.①反映了建议(Ⅰ),③反映了建议(Ⅱ)
C.②反映了建议(Ⅰ),④反映了建议(Ⅱ)
D.④反映了建议(Ⅰ),②反映了建议(Ⅱ)
为了解高二某班学生喜爱打篮球是否与性别有关,对本班50人进行了问卷调查得到了如下的列联表:
已知在全部50人中随机抽取1人抽到喜爱打篮球的学生的概率为.
(1)请将上面的列联表补充完整;
(2)是否有99.5%的把握认为喜爱打篮球与性别有关?说明你的理由;
下面的临界值表供参考:
(参考公式K2=,其中n=a+b+c+d)
某研究型学习课程的学生中,高一年级有30名,高二年级有40名.现用分层抽样的方法在这70名学生中抽取一个样本,已知在高一年级的学生中抽取了6名,则在高二年级的学生中应抽取的人数为 ( )
A.6 B.8 C.10 D.12
命题“若都是奇数,则是偶数”的逆否命题是( )
A.若都不是奇数,则是偶数 B.若是偶数,则都是奇数
C.若不是偶数,则都不是奇数 D.若不是偶数,则不都是奇数