题目内容
如图,在直三棱柱ABC-A1B1C1中,AB=BC,D、E分别为BB1、AC1的中点.(I)证明:ED为异面直线BB1与AC1的公垂线;
(II)设AA1=AC=
2 |
分析:(Ⅰ)设O为AC中点,连接EO,BO,欲证ED为异面直线AC1与BB1的公垂线,只需证明ED与直线AC1与BB1都垂直且相交,根据线面垂直的性质可知ED⊥CC1,而ED⊥BB1,即可证得;
(Ⅱ)连接A1E,作EF⊥AD,垂足为F,连接A1F,根据二面角的平面角定义可知∠A1FE为二面角A1-AD-C1的平面角,在三角形A1FE中求出此角即可.
(Ⅱ)连接A1E,作EF⊥AD,垂足为F,连接A1F,根据二面角的平面角定义可知∠A1FE为二面角A1-AD-C1的平面角,在三角形A1FE中求出此角即可.
解答:解:(Ⅰ)设O为AC中点,连接EO,BO,则EO
C1C,又C1C
B1B,所以EO
DB,EOBD为平行四边形,ED∥OB.(2分)
∵AB=BC,
∴BO⊥AC,
又平面ABC⊥平面ACC1A1,BO?面ABC,
故BO⊥平面ACC1A1,
∴ED⊥平面ACC1A1,ED⊥AC1,ED⊥CC1,
∴ED⊥BB1,ED为异面直线AC1与BB1的公垂线.(6分)
(Ⅱ)连接A1E,由AA1=AC=
AB可知,A1ACC1为正方形,
∴A1E⊥AC1,又由ED⊥平面ACC1A1和ED?平面ADC1知平面
ADC1⊥平面A1ACC1,
∴A1E⊥平面ADC1.
作EF⊥AD,垂足为F,连接A1F,则A1F⊥AD,∠A1FE为二面角A1-AD-C1的平面角.
不妨设AA1=2,则AC=2,AB=
,ED=OB=1,EF=
=
,
tan∠A1FE=
,
∴∠A1FE=60°.
所以二面角A1-AD-C1为60°.(12分)
∥ |
. |
1 |
2 |
∥ |
. |
∥ |
. |
∵AB=BC,
∴BO⊥AC,
又平面ABC⊥平面ACC1A1,BO?面ABC,
故BO⊥平面ACC1A1,
∴ED⊥平面ACC1A1,ED⊥AC1,ED⊥CC1,
∴ED⊥BB1,ED为异面直线AC1与BB1的公垂线.(6分)
(Ⅱ)连接A1E,由AA1=AC=
2 |
∴A1E⊥AC1,又由ED⊥平面ACC1A1和ED?平面ADC1知平面
ADC1⊥平面A1ACC1,
∴A1E⊥平面ADC1.
作EF⊥AD,垂足为F,连接A1F,则A1F⊥AD,∠A1FE为二面角A1-AD-C1的平面角.
不妨设AA1=2,则AC=2,AB=
2 |
AE×ED |
AD |
| ||
|
tan∠A1FE=
3 |
∴∠A1FE=60°.
所以二面角A1-AD-C1为60°.(12分)
点评:本题主要考查了异面直线公垂线的证明,二面角的度量,以及空间想象能力和推理能力,属于基础题.
练习册系列答案
相关题目