ÌâÄ¿ÄÚÈÝ
19£®Éè$\overrightarrow a=£¨{{x_1}£¬{y_1}}£©£¬\overrightarrow b=£¨{{x_2}£¬{y_2}}£©$¶¨ÒåÒ»ÖÖÏòÁ¿»ý$\overrightarrow a?\overrightarrow b=£¨{{x_1}£¬{y_1}}£©?£¨{{x_2}£¬{y_2}}£©=£¨{{x_1}{x_2}£¬{y_1}{y_2}}£©$£®ÒÑÖª$\overrightarrow{m}$=£¨2£¬$\frac{1}{2}$£©£¬$\overrightarrow{n}$=£¨$\frac{¦Ð}{3}$£¬0£©£¬µãP£¨x£¬y£©ÔÚy=sinxµÄͼÏóÉÏÔ˶¯£¬µãQÔÚy=f£¨x£©µÄͼÏóÉÏÔ˶¯£¬ÇÒÂú×ã$\overrightarrow{OQ}$=$\overrightarrow{m}$?$\overrightarrow{OP}$+$\overrightarrow{n}$£¨ÆäÖÐOΪ×ø±êԵ㣩£¬Ôòy=f£¨x£©µÄ×î´óÖµA¼°×îСÕýÖÜÆÚT·Ö±ðΪ£¨¡¡¡¡£©A£® | 2£¬¦Ð | B£® | 2£¬4¦Ð | C£® | $\frac{1}{2}$£¬4¦Ð | D£® | $\frac{1}{2}£¬¦Ð$ |
·ÖÎö ÉèQ£¨x£¬y£©£¬P£¨x0£¬y0£©£¬ÀûÓÃж¨Òå½áºÏÒÑÖªµÃµ½¹ØÓÚQ¡¢P×ø±êµÄ¹Øϵ£¬°ÑPµÄ×ø±êÓÃQµÄ×ø±ê±íʾ£¬È»ºó´úÈëy=sinxÇóµÃº¯Êýf£¨x£©µÄ½âÎöʽ£¬Ôò´ð°¸¿ÉÇó£®
½â´ð ½â£ºÉèQ£¨x£¬y£©£¬P£¨x0£¬y0£©£¬
¡ß$\overrightarrow{m}$=£¨2£¬$\frac{1}{2}$£©£¬$\overrightarrow{n}$=£¨$\frac{¦Ð}{3}$£¬0£©£¬
ÔòÓÉ$\overrightarrow{OQ}$=$\overrightarrow{m}$?$\overrightarrow{OP}$+$\overrightarrow{n}$£¬µÃ
£¨x£¬y£©=£¨$2{x}_{0}£¬\frac{1}{2}{y}_{0}$£©+£¨$\frac{¦Ð}{3}£¬0$£©=£¨$2{x}_{0}+\frac{¦Ð}{3}£¬\frac{1}{2}{y}_{0}$£©£¬
¡à${x}_{0}=\frac{1}{2}x-\frac{¦Ð}{6}$£¬y0=2y£¬
´úÈëy=sinx£¬µÃ$y=\frac{1}{2}sin£¨\frac{1}{2}x-\frac{¦Ð}{6}£©$£®
¡ày=f£¨x£©µÄ×î´óÖµA=$\frac{1}{2}$£¬×îСÕýÖÜÆÚT=$\frac{2¦Ð}{\frac{1}{2}}=4¦Ð$£®
¹ÊÑ¡£ºC£®
µãÆÀ ±¾ÌâÊÇж¨ÒåÌ⣬¿¼²éÁËƽÃæÏòÁ¿µÄ×ø±êÔËË㣬¿¼²éÁËÈý½Çº¯ÊýµÄͼÏóºÍÐÔÖÊ£¬ÊÇÖе͵µÌ⣮
A£® | 2-i»ò-2+i | B£® | 2+i»ò-2-i | C£® | 2-i»ò2+i | D£® | -2-i»ò-2+i |
A£® | £¨$\frac{1}{2}$£¬1 £© | B£® | £¨ 2£¬+¡Þ£© | C£® | £¨ 0£¬$\frac{1}{2}$£©¡È£¨ 2£¬+¡Þ£© | D£® | £¨$\frac{1}{2}$£¬1 £©¡È£¨ 2£¬+¡Þ£© |