题目内容
挪威数学家阿贝尔曾经根据阶梯形图形的两种不同分割(如下图),利用它们的面积关系发现了一个重要的恒等式——阿贝尔公式:
a1b1+a2b2+a3b3+…+anbn=L1(b1-b2)+L2(b2-b3)+L3(b3-b4)+…+Ln-1(bn-1-bn)+Lnbn,其中L1=a1,则
(Ⅰ)L3= ;
(Ⅱ)Ln= .
a1b1+a2b2+a3b3+…+anbn=L1(b1-b2)+L2(b2-b3)+L3(b3-b4)+…+Ln-1(bn-1-bn)+Lnbn,其中L1=a1,则
(Ⅰ)L3= ;
(Ⅱ)Ln= .
(Ⅰ);(Ⅱ).
试题分析:由图可知,.
练习册系列答案
相关题目