题目内容
设X~N(1,22),试求
(1)P(-1<X≤3);
(2)P(3<X≤5);
(3)P(X≥5).
(1)P(-1<X≤3);
(2)P(3<X≤5);
(3)P(X≥5).
(1)0.682 6(2)0.135 9(3)0.022 8
∵X~N(1,22),∴=1,=2.
(1)P(-1<X≤3)=P(1-2<X≤1+2)=P(-<X≤+)="0.682" 6.
(2)∵P(3<X≤5)=P(-3<X≤-1)
∴P(3<X≤5)=[P(-3<X≤5)-P(-1<X≤3)]=[P(1-4<X≤1+4)-P(1-2<X≤1+2)]
=[P(-2<X≤+2)-P(-<X≤+)]=×(0.954 4-0.682 6)="0.135" 9.
(3)∵P(X≥5)=P(X≤-3),
∴P(X≥5)=[1-P(-3<X≤5)]=[1-P(1-4<X≤1+4)]
=[1-P(-2<X≤+2)]=(1-0.954 4)="0.022" 8.
(1)P(-1<X≤3)=P(1-2<X≤1+2)=P(-<X≤+)="0.682" 6.
(2)∵P(3<X≤5)=P(-3<X≤-1)
∴P(3<X≤5)=[P(-3<X≤5)-P(-1<X≤3)]=[P(1-4<X≤1+4)-P(1-2<X≤1+2)]
=[P(-2<X≤+2)-P(-<X≤+)]=×(0.954 4-0.682 6)="0.135" 9.
(3)∵P(X≥5)=P(X≤-3),
∴P(X≥5)=[1-P(-3<X≤5)]=[1-P(1-4<X≤1+4)]
=[1-P(-2<X≤+2)]=(1-0.954 4)="0.022" 8.
练习册系列答案
相关题目