题目内容

11.求函数y=$\frac{a({x}^{2}+3)+x+1}{x+1}$(x>-1)的最值.

分析 化简y=$\frac{a({x}^{2}+3)+x+1}{x+1}$=a$\frac{{x}^{2}+3}{x+1}$+1,再令f(x)=$\frac{{x}^{2}+3}{x+1}$=(x+1)+$\frac{4}{x+1}$-2;从而由基本不等式可确定f(x)≥2;再讨论a的正负以确定最值.

解答 解:∵y=$\frac{a({x}^{2}+3)+x+1}{x+1}$=a$\frac{{x}^{2}+3}{x+1}$+1,
∴令f(x)=$\frac{{x}^{2}+3}{x+1}$=(x+1)+$\frac{4}{x+1}$-2;
∵x+1>0,
∴(x+1)+$\frac{4}{x+1}$≥4,
(当且仅当x+1=$\frac{4}{x+1}$时,等号成立);
故f(x)≥2;
故当a>0时,y=$\frac{a({x}^{2}+3)+x+1}{x+1}$=a$\frac{{x}^{2}+3}{x+1}$+1有最小值2a+1;
当a<0时,y=$\frac{a({x}^{2}+3)+x+1}{x+1}$=a$\frac{{x}^{2}+3}{x+1}$+1有最大值2a+1.

点评 本题考查了函数的化简与基本不等式的应用,同时考查了分类讨论的应用,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网