题目内容
设x>0,y>0,z>0.(Ⅰ)利用作差法比较
x2 |
x+y |
3x-y |
4 |
(Ⅱ)求证:x2+y2+z2≥xy+yz+zx;
(Ⅲ)利用(Ⅰ)(Ⅱ)的结论,证明:
x3 |
x+y |
y3 |
y+z |
z3 |
z+x |
xy+yz+zx |
2 |
分析:(1)作差、变形到因式乘积的形式,判断符号,得出结论.
(Ⅱ) 作差、变形到完全平方的和的形式,判断符号,得出结论.
(Ⅲ)由(1)可得
≥
,同理可得
≥
,
≥
,相加后利用(Ⅱ) 的
结论即可证明不等式成立.
(Ⅱ) 作差、变形到完全平方的和的形式,判断符号,得出结论.
(Ⅲ)由(1)可得
x3 |
x+y |
3x2-xy |
4 |
y3 |
y+z |
3y2-yz |
4 |
z3 |
z+x |
3z2-zx |
4 |
结论即可证明不等式成立.
解答:解:(1)∵
-
=
≥0,∴
≥
.
(Ⅱ)∵x2+y2+z2-(xy+yz+zx)=
[(x-y)2+(y-z)2+(z-x)2]≥0;
∴x2+y2+z2≥xy+yz+zx.
(Ⅲ)由(1)可得
≥
,类似的有
≥
,
≥
,
∴
+
+
≥
=
≥
=
,
故
+
+
≥
成立.
x2 |
x+y |
3x-y |
4 |
(x-y)2 |
4(x+y) |
x2 |
x+y |
3x-y |
4 |
(Ⅱ)∵x2+y2+z2-(xy+yz+zx)=
1 |
2 |
∴x2+y2+z2≥xy+yz+zx.
(Ⅲ)由(1)可得
x3 |
x+y |
3x2-xy |
4 |
y3 |
y+z |
3y2-yz |
4 |
z3 |
z+x |
3z2-zx |
4 |
∴
x3 |
x+y |
y3 |
y+z |
z3 |
z+x |
3x2-xy+3y2-yz+3z2-zx |
4 |
3(x2+y2+z2)-xy-yz-zx |
4 |
3(xy+yz+zx)-xy-yz-zx |
4 |
xy+yz+zx |
2 |
故
x3 |
x+y |
y3 |
y+z |
z3 |
z+x |
xy+yz+zx |
2 |
点评:本题考查用比较法、综合法证明不等式,由(1)得
≥
,是解题的关键.
x3 |
x+y |
3x2-xy |
4 |

练习册系列答案
相关题目