题目内容

已知函数.

⑴若曲线处的切线方程为,求实数的值;

⑵求证;对任意恒成立的充要条件是

⑶若,且对任意,都,求的取值范围.

解:⑴,又,所以曲线处的切线方程为

由已知得,所以.

⑵充分性

时,

时,,当时,

所以上是增函数,在上是减函数,

必要性

时,上是减函数,而

时,,与恒成立矛盾,所以不成立

时,

时,,当时,

所以上是增函数,在上是减函数,

因为,又当时,恒成立不符.

所以.

综上,对任意恒成立的充要条件是

⑶当时,,∴上是减函数,

不妨设且,则

等价于,即

上是减函数,

时恒成立,

,又,所以的取值范围是

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网