题目内容
16.数列{an}的前n项和为Sn,且Sn=1-$\frac{2}{3}{a_n}$(n∈N+).(1)判断数列{an}是什么数列?
(2)求数列{nan}的前n项和Tn.
分析 (1)在数列递推式中取n=1求得首项,当n≥2时,由${a_n}={S_n}-{S_{n-1}}=(1-\frac{2}{3}{a_n})-(1-\frac{2}{3}{a_{n-1}})$,得到$\frac{a_n}{{{a_{n-1}}}}=\frac{2}{5}$,即数列{an}是以$\frac{3}{5}$为首项,$\frac{2}{5}$为公比的等比数列;
(2)由(1)求出数列列{an}的通项公式,代入nan,然后利用错位相减法求数列的前n项和Tn.
解答 解:(1)当n=1时,${a_1}={S_1}=1-\frac{2}{3}{a_1}$,解得${a_1}=\frac{3}{5}$,
当n≥2时,${a_n}={S_n}-{S_{n-1}}=(1-\frac{2}{3}{a_n})-(1-\frac{2}{3}{a_{n-1}})$,
得5an=2an-1,∴$\frac{a_n}{{{a_{n-1}}}}=\frac{2}{5}$,
∴数列{an}是以$\frac{3}{5}$为首项,$\frac{2}{5}$为公比的等比数列;
(2)由(1)知:${a}_{n}=\frac{3}{5}•(\frac{2}{5})^{n-1}$,
∴$n{a}_{n}=\frac{3}{5}n•(\frac{2}{5})^{n-1}$,
则${T_n}=\frac{3}{5}×1×{({\frac{2}{5}})^0}+\frac{3}{5}×2×{({\frac{2}{5}})^1}+…+\frac{3}{5}×({n-1})×{({\frac{2}{5}})^{n-2}}+\frac{3}{5}×n×{({\frac{2}{5}})^{n-1}}$,
$\frac{2}{5}{T}_{n}=\frac{3}{5}×1×(\frac{2}{5})^{1}+\frac{3}{5}×2×(\frac{2}{5})^{2}+…+\frac{3}{5}×(n-1)×(\frac{2}{5})^{n-1}$$+\frac{3}{5}×n×(\frac{2}{5})^{n}$,?
两式相减得:$\frac{3}{5}{T}_{n}=\frac{3}{5}×(\frac{2}{5})^{0}+\frac{3}{5}×(\frac{2}{5})^{1}+…+\frac{3}{5}×(\frac{2}{5})^{n-1}-\frac{3}{5}×n×(\frac{2}{5})^{n}$,
则${T}_{n}=(\frac{2}{5})^{0}+(\frac{2}{5})^{1}+…+(\frac{2}{5})^{n-1}-n(\frac{2}{5})^{n}$=$\frac{1-(\frac{2}{5})^{n}}{1-\frac{2}{5}}-n(\frac{2}{5})^{n}=\frac{5}{3}-(\frac{5}{3}+n)(\frac{2}{5})^{n}$.
点评 本题考查了数列递推式,考查了等比关系的确定,训练了错位相减法求数列的前n项和,是中档题.
A. | c<a<b | B. | a<c<b | C. | a<b<c | D. | b<c<a |