题目内容
若(x+1)4(x+4)8=a0(x+3)12+ a1(x+3)11+ a2(x+3)10+…+ a11(x+3)+a12,则log2(a1+a3+a5+…+a11)=( ).
A.27 | B.28 | C.8 | D.7 |
D
令x="-2," 则a0+ a1+ a2+…+ a11+a12=28,
令x="-4," 则a0-a1+ a2-…-a11+a12=0,
两式相加得2(a1+a3+a5+…+a11)= 28,a1+a3+a5+…+a11= 27.故选D.
令x="-4," 则a0-a1+ a2-…-a11+a12=0,
两式相加得2(a1+a3+a5+…+a11)= 28,a1+a3+a5+…+a11= 27.故选D.
练习册系列答案
相关题目