题目内容

(2011•遂宁二模)已知各项均为正数的数列{an}的前n项和Sn满足S1>1,且6Sn=(an+1)(an+2),n∈N*
(I)求数列{an}的通项公式;
(II)设数列{bn}满足an(2bn-1)=1,记Tn为数列{bn}的前n项和.求证:2Tn+1<log2(an+3)
分析:(I)n=1时,6a1=a12+3a1+2,且a1>1,解得a1=2.n≥2时,6Sn=an2+3an+2,6Sn-1=an-12+3an-1+2,两式相减得(an+an-1)(an-an-1-3)=0由此能求出an
(II)根据数列{bn}满足an(2bn-1)=1,可得bn=log2
3n
3n-1
,从而Tn=b1+b2+…+bn=log2(
3
2
×
6
5
×…×
3n
3n-1
)
,利用分析法证明.要证2Tn+1<log2(an+3),即证2log2(
3
2
×
6
5
×…×
3n
3n-1
)+1
<log2(an+3),即证
2(
3
2
×
6
5
×…×
3n
3n-1
)
2
3n+2
<1
,构造函数cn=
2(
3
2
×
6
5
×…×
3n
3n-1
)
2
3n+2
,可得{cn}是单调递减数列,即可证出结论.
解答:(I)解:n=1时,6a1=a12+3a1+2,且a1>1,解得a1=2.
n≥2时,6Sn=an2+3an+2,6Sn-1=an-12+3an-1+2,两式相减得(an+an-1)(an-an-1-3)=0,
∵an+an-1>0,
∴an-an-1=3,
∴{an}为等差数列,
∵a1=2,
∴an=3n-1.
(II)证明:∵数列{bn}满足an(2bn-1)=1
bn=log2
3n
3n-1

∴Tn=b1+b2+…+bn=log2(
3
2
×
6
5
×…×
3n
3n-1
)

要证2Tn+1<log2(an+3),即证2log2(
3
2
×
6
5
×…×
3n
3n-1
)+1
<log2(an+3)
即证(
3
2
×
6
5
×…×
3n
3n-1
)
2
3n+2
2

即证
2(
3
2
×
6
5
×…×
3n
3n-1
)
2
3n+2
<1

cn=
2(
3
2
×
6
5
×…×
3n
3n-1
)
2
3n+2

cn+1
cn
=
9n2+18n+9
9n2+21n+10
<1

∵cn>0,∴cn+1<cn
∴{cn}是单调递减数列
cnc1=
(
3
2
)
2
3×1+2
=
9
10
<1

cn=
2(
3
2
×
6
5
×…×
3n
3n-1
)
2
3n+2
<1

故2Tn+1<log2(an+3).
点评:本题考查数列的综合应用,解题时要认真审题,仔细解答,注意挖掘题设中的隐含条件,合理地进行等价转化.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网