题目内容
(2011•遂宁二模)已知各项均为正数的数列{an}的前n项和Sn满足S1>1,且6Sn=(an+1)(an+2),n∈N*.
(I)求数列{an}的通项公式;
(II)设数列{bn}满足an(2bn-1)=1,记Tn为数列{bn}的前n项和.求证:2Tn+1<log2(an+3)
(I)求数列{an}的通项公式;
(II)设数列{bn}满足an(2bn-1)=1,记Tn为数列{bn}的前n项和.求证:2Tn+1<log2(an+3)
分析:(I)n=1时,6a1=a12+3a1+2,且a1>1,解得a1=2.n≥2时,6Sn=an2+3an+2,6Sn-1=an-12+3an-1+2,两式相减得(an+an-1)(an-an-1-3)=0由此能求出an.
(II)根据数列{bn}满足an(2bn-1)=1,可得bn=log2
,从而Tn=b1+b2+…+bn=log2(
×
×…×
),利用分析法证明.要证2Tn+1<log2(an+3),即证2log2(
×
×…×
)+1<log2(an+3),即证
<1,构造函数cn=
,可得{cn}是单调递减数列,即可证出结论.
(II)根据数列{bn}满足an(2bn-1)=1,可得bn=log2
3n |
3n-1 |
3 |
2 |
6 |
5 |
3n |
3n-1 |
3 |
2 |
6 |
5 |
3n |
3n-1 |
2(
| ||||||
3n+2 |
2(
| ||||||
3n+2 |
解答:(I)解:n=1时,6a1=a12+3a1+2,且a1>1,解得a1=2.
n≥2时,6Sn=an2+3an+2,6Sn-1=an-12+3an-1+2,两式相减得(an+an-1)(an-an-1-3)=0,
∵an+an-1>0,
∴an-an-1=3,
∴{an}为等差数列,
∵a1=2,
∴an=3n-1.
(II)证明:∵数列{bn}满足an(2bn-1)=1,
∴bn=log2
∴Tn=b1+b2+…+bn=log2(
×
×…×
)
要证2Tn+1<log2(an+3),即证2log2(
×
×…×
)+1<log2(an+3)
即证(
×
×…×
)2<
即证
<1
令cn=
,
∴
=
<1
∵cn>0,∴cn+1<cn,
∴{cn}是单调递减数列
∴cn≤c1=
=
<1
∴cn=
<1
故2Tn+1<log2(an+3).
n≥2时,6Sn=an2+3an+2,6Sn-1=an-12+3an-1+2,两式相减得(an+an-1)(an-an-1-3)=0,
∵an+an-1>0,
∴an-an-1=3,
∴{an}为等差数列,
∵a1=2,
∴an=3n-1.
(II)证明:∵数列{bn}满足an(2bn-1)=1,
∴bn=log2
3n |
3n-1 |
∴Tn=b1+b2+…+bn=log2(
3 |
2 |
6 |
5 |
3n |
3n-1 |
要证2Tn+1<log2(an+3),即证2log2(
3 |
2 |
6 |
5 |
3n |
3n-1 |
即证(
3 |
2 |
6 |
5 |
3n |
3n-1 |
3n+2 |
2 |
即证
2(
| ||||||
3n+2 |
令cn=
2(
| ||||||
3n+2 |
∴
cn+1 |
cn |
9n2+18n+9 |
9n2+21n+10 |
∵cn>0,∴cn+1<cn,
∴{cn}是单调递减数列
∴cn≤c1=
2×(
| ||
3×1+2 |
9 |
10 |
∴cn=
2(
| ||||||
3n+2 |
故2Tn+1<log2(an+3).
点评:本题考查数列的综合应用,解题时要认真审题,仔细解答,注意挖掘题设中的隐含条件,合理地进行等价转化.
练习册系列答案
相关题目