题目内容

【题目】函数f(x)=Asin(wx+j)(A0w0-jx∈R)的部分图象如图所示:

(1)求函数y=f(x)的解析式;(2)x∈时,求f(x)的取值范围.

【答案】1f(x)=sin(x+);(2[-1,].

【解析】

试题(1)图像离平衡位置最高值为1可知A=1,又从图可看出周期的四分之一为,根据可求得w的值,对于j可通过代入(1)点求得,但要注意j的范围;(2)本小题考查三角函数求值域问题,由x的范围可先求出x+的范围,结合正弦函数图像可求出sin(x+)的取值范围.

试题解析:(1)由图象得A=1,所以T=2p,则w="1." 将点(1)代入得sin(+j)=1,而-j,所以j=,因此函数f(x)=sin(x+).

(2)由于x∈-≤x+,所以-1≤sin(x+)≤,所以f(x)的取值范围[-1,].

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网