题目内容
16.假设每天从甲地去乙地的旅客人数X是服从正态分布N(800,502)的随机变量.记一天中从甲地去乙地的旅客人数不超过900的概率为p0.则p0的值为( )(参考数据:若X~N(μ,σ2),有P(μ-σ≤X≤μ+σ)=0.682 6,P(μ-2σ≤X≤μ+2σ)=0.954 4,P(μ-3σ≤X≤μ+3σ)=0.9974)A. | 0.9544 | B. | 0.6826 | C. | 0.9974 | D. | 0.9772 |
分析 变量服从正态分布N(800,502),即服从均值为800,标准差为50的正态分布,适合700<X≤900范围内取值即在(μ-2σ,μ+2σ)内取值,其概率为:95.44%,从而由正态分布的对称性得出不超过900的概率为p0.
解答 解:(Ⅰ)由于随机变量X服从正态分布N(800,502),故有μ=800,σ=50,P(700<X≤900)=0.9544.
由正态分布的对称性,可得p0=(P(X≤900)=P(X≤800)+P(800<X≤900)=$\frac{1}{2}$+$\frac{1}{2}$P(700<X≤900)=0.9772
故选:D.
点评 本题考查正态分布曲线的特点及曲线所表示的意义,考查学生的计算能力,比较基础.
练习册系列答案
相关题目
7.已知正项等比数列{an}满足:a6=a5+2a4,若存在两项am,an,使得$\sqrt{{a}_{m}{a}_{n}}$=2a1,则$\frac{1}{m}$+$\frac{9}{n}$的最小值为( )
A. | 6 | B. | 5 | C. | $\frac{28}{3}$ | D. | 4 |