题目内容
对于x∈R,函数f(x)满足f(1-x)=f(1+x),f(x+2)=f(x),若当x∈(0,1]时,f(x)=x+1,则等于
- A.
- B.
- C.
- D.
B
分析:由f(x+2)=f(x),得到函数的周期是2,由f(1-x)=f(1+x),得到函数关于x=1对称,然后利用周期和对称将转化到(0,1)内的数值进行求解.
解答:因为f(x+2)=f(x),所以函数的周期是2.又f(1-x)=f(1+x),所以函数关于x=1对称,
所以f()=f(2×)=f()=f(1+)=f(1-)=f(),
因为x∈(0,1]时,f(x)=x+1,所以f()=,
故选B.
点评:本题考查了函数的周期性和对称性的应用,要求熟练掌握函数性质的综合应用.
分析:由f(x+2)=f(x),得到函数的周期是2,由f(1-x)=f(1+x),得到函数关于x=1对称,然后利用周期和对称将转化到(0,1)内的数值进行求解.
解答:因为f(x+2)=f(x),所以函数的周期是2.又f(1-x)=f(1+x),所以函数关于x=1对称,
所以f()=f(2×)=f()=f(1+)=f(1-)=f(),
因为x∈(0,1]时,f(x)=x+1,所以f()=,
故选B.
点评:本题考查了函数的周期性和对称性的应用,要求熟练掌握函数性质的综合应用.
练习册系列答案
相关题目