题目内容

1.设数列{an}的前n项$\underset{之}{•}$$\underset{积}{•}$为Tn,且Tn=1-an,(n∈N*
(I)求a1,并证明数列{$\frac{1}{1-{a}_{n}}$}是等差数列;
(Ⅱ)设Sn=T${\;}_{1}^{2}$+T${\;}_{2}^{2}$+…+T${\;}_{n}^{2}$,求证:$\frac{1}{2}$-$\frac{1}{n+2}$<Sn<$\frac{2}{3}$-$\frac{1}{n+2}$(n∈N*).

分析 (1)由Tn=1-an,当n=1时,a1=1-a1,解得a1.当n≥2时,Tn-1=1-an-1,相除可得:${a}_{n}=\frac{{T}_{n}}{{T}_{n-1}}$=$\frac{1-{a}_{n}}{1-{a}_{n-1}}$,计算$\frac{1}{1-{a}_{n}}$-$\frac{1}{1-{a}_{n-1}}$为常数即可证明结论.
(II)由(I)可得:$\frac{1}{1-{a}_{n}}$=2+(n-1),可得Tn=$\frac{1}{n+1}$.于是Sn=$\frac{1}{{2}^{2}}$+$\frac{1}{{3}^{2}}$+…+$\frac{1}{(n+1)^{2}}$.
首先证明左边:$\frac{1}{2}$-$\frac{1}{n+2}$<Sn.利用$\frac{1}{{n}^{2}+3n+2}$$<\frac{1}{{n}^{2}+2n+1}$,可得$\frac{1}{n+1}-\frac{1}{n+2}$$<\frac{1}{{n}^{2}+2n+1}$,利用“裂项求和”即可得出.
再证明右边:Sn<$\frac{2}{3}$-$\frac{1}{n+2}$(n∈N*).当n=1时,当n=2时,直接验证不等式成立.当n≥3时,利用$\frac{1}{(n+1)^{2}}$=$\frac{2}{2{n}^{2}+4n}$<$\frac{2}{{n}^{2}+5n+6}$=$2(\frac{1}{n+2}-\frac{1}{n+3})$,即可证明.

解答 (1)解:∵Tn=1-an
∴当n=1时,a1=1-a1,解得a1=$\frac{1}{2}$.
当n≥2时,Tn-1=1-an-1
∴${a}_{n}=\frac{{T}_{n}}{{T}_{n-1}}$=$\frac{1-{a}_{n}}{1-{a}_{n-1}}$,
化为an=$\frac{1}{2-{a}_{n-1}}$,
∴$\frac{1}{1-{a}_{n}}$-$\frac{1}{1-{a}_{n-1}}$=$\frac{1}{1-\frac{1}{2-{a}_{n-1}}}$-$\frac{1}{1-{a}_{n-1}}$=1,
∴数列{$\frac{1}{1-{a}_{n}}$}是等差数列,首项为2,公差为1.
(II)证明:由(I)可得:$\frac{1}{1-{a}_{n}}$=2+(n-1),
解得1-an=$\frac{1}{n+1}$.
∴Tn=$\frac{1}{n+1}$.
∴Sn=T${\;}_{1}^{2}$+T${\;}_{2}^{2}$+…+T${\;}_{n}^{2}$=$\frac{1}{{2}^{2}}$+$\frac{1}{{3}^{2}}$+…+$\frac{1}{(n+1)^{2}}$,
首先证明左边:$\frac{1}{2}$-$\frac{1}{n+2}$<Sn
∵$\frac{1}{{n}^{2}+3n+2}$$<\frac{1}{{n}^{2}+2n+1}$,
∴$\frac{1}{n+1}-\frac{1}{n+2}$$<\frac{1}{{n}^{2}+2n+1}$,
∴Sn>$(\frac{1}{2}-\frac{1}{3})$+$(\frac{1}{3}-\frac{1}{4})$+…+$(\frac{1}{n+1}-\frac{1}{n+2})$=$\frac{1}{2}-\frac{1}{n+2}$,
∴$\frac{1}{2}-\frac{1}{n+2}$<Sn
再证明右边:Sn<$\frac{2}{3}$-$\frac{1}{n+2}$(n∈N*).
当n=1时,$\frac{1}{{2}^{2}}$=$\frac{1}{4}$<$\frac{1}{3}$=$\frac{2}{3}-\frac{1}{3}$,不等式成立;
当n=2时,$\frac{1}{{2}^{2}}+\frac{1}{{3}^{2}}$=$\frac{13}{36}$,$\frac{2}{3}-\frac{1}{4}$=$\frac{5}{12}$=$\frac{15}{36}$,$\frac{1}{{2}^{2}}+\frac{1}{{3}^{2}}$<$\frac{2}{3}-\frac{1}{4}$,不等式成立.
当n≥3时,$\frac{1}{(n+1)^{2}}$=$\frac{2}{2{n}^{2}+4n}$<$\frac{2}{{n}^{2}+5n+6}$=$2(\frac{1}{n+2}-\frac{1}{n+3})$,
∴Sn<$2[(\frac{1}{3}-\frac{1}{4})+(\frac{1}{5}-\frac{1}{6})$+…+$(\frac{1}{n+2}-\frac{1}{n+3})]$
=2$(\frac{1}{3}-\frac{1}{n+3})$=$\frac{2}{3}$-$\frac{2}{n+3}$<$\frac{2}{3}$-$\frac{1}{n+2}$.
∴Sn<$\frac{2}{3}$-$\frac{1}{n+2}$(n∈N*).
综上可得:$\frac{1}{2}$-$\frac{1}{n+2}$<Sn<$\frac{2}{3}$-$\frac{1}{n+2}$(n∈N*).

点评 本题考查了递推关系的应用、等差数列的通项公式、“放缩法”、“裂项求和”,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网