题目内容
对于函数①f(x)=|x+2|,②f(x)=(x-2)2,③f(x)=cos(x-2),判断如下两个命题的真假:
命题甲:f(x+2)是偶函数;
命题乙:f(x)在(-∞,2)上是减函数,在(2,+∞)上是增函数;
能使命题甲、乙均为真的所有函数的序号是
A.①②
B.①③
C.②
D.③
对于函数f(x)=ax2(b+1)x+b-2(a≠0),若存在实数x0,使f(x0)=x0成立,则称x0为f(x)的不动点.
(1)当a=2,b=-2时,求f(x)的不动点;
(2)若对于任何实数b,函数f(x)恒有两相异的不动点,求实数a的取值范围;
(3)在(2)的条件下,若y=f(x)的图象上A、B两点的横坐标是函数f(x)的不动点,且直线y=kx+是线段AB的垂直平分线,求实数b的取值范围.
对于函数f(x),定义:若存在非零常数M,T,使函数f(x)对定义域内的任意x,都满足f(x+T)-f(x)=M,则称函数y=f(x)是准周期函数,非零常数T称为函数y=f(x)的一个准周期.如函数f(x)=2x+sinx是以T=2π为一个准周期且M=4π的准周期函数.下列命题:
①2π是函数f(x)=sinx的一个准周期;
②f(x)=x+(-1)x(x∈z)是以T=2为一个准周期且M=2的准周期函数;
③函数f(x)=kx+b+Asin(wx+φ)(k≠0,w>0)是准周期函数;
④如果f(x)是一个一次函数与一个周期函数的和的形式,则f(x)一定是准周期函数;
⑤如果f(x+1)=-f(x)则函数h(x)=x+f(x)是以T=2为一个准周期且M=4的准周期函数;其中的真命题是________.
对于函数f(x)=ax2+(b+1)x+b-2(a≠0),若存在实数x0,使f(x0)=x0成立,则称x0为f(x)的不动点.
(2)若对于任何实数b,函数f(x)恒有两个相异的不动点,求实数a的取值范围;
(3)在(2)的条件下,若y=f(x)的图象上A,B两点的横坐标是函数f(x)的不动点,且直线y=kx+是线段AB的垂直平分线,求实数b的取值范围.
(本小题满分6分)对于函数f(x),若存在x0ÎR,使f(x0)=x0成立,则称点(x0,x0)为函数的不动点,已知函数f(x)=ax2+bx-b有不动点(1,1)和(-3,-3),求a、b的值。