题目内容
11.已知4$\overrightarrow{a}$-2$\overrightarrow{b}$=(-2,2$\sqrt{3}$),$\overrightarrow{c}$=(1,$\sqrt{3}$),$\overrightarrow{a}•\overrightarrow{c}$=3,|$\overrightarrow{b}$|=4,求向量$\overrightarrow{b}$与$\overrightarrow{c}$的夹角.分析 设$\overrightarrow{b}$=(x,y).由4$\overrightarrow{a}$-2$\overrightarrow{b}$=(-2,2$\sqrt{3}$),可得$\overrightarrow{a}$=$(\frac{x-1}{2},\frac{y+\sqrt{3}}{2})$,由于$\overrightarrow{c}$=(1,$\sqrt{3}$),$\overrightarrow{a}•\overrightarrow{c}$=3,可得:x+$\sqrt{3}$y=4.由|$\overrightarrow{b}$|=4,x2+y2=16.联立$\left\{\begin{array}{l}{x+\sqrt{3}y=4}\\{{x}^{2}+{y}^{2}=16}\end{array}\right.$,
解出,再利用向量夹角公式即可得出.
解答 解:设$\overrightarrow{b}$=(x,y).∵4$\overrightarrow{a}$-2$\overrightarrow{b}$=(-2,2$\sqrt{3}$),∴$\overrightarrow{a}$=$(\frac{x-1}{2},\frac{y+\sqrt{3}}{2})$,
∵$\overrightarrow{c}$=(1,$\sqrt{3}$),$\overrightarrow{a}•\overrightarrow{c}$=3,
∴3=$\frac{x-1}{2}$+$\frac{\sqrt{3}(y+\sqrt{3})}{2}$,化为x+$\sqrt{3}$y=4.
∵|$\overrightarrow{b}$|=4,
∴$\sqrt{{x}^{2}+{y}^{2}}$=4,即x2+y2=16.
联立$\left\{\begin{array}{l}{x+\sqrt{3}y=4}\\{{x}^{2}+{y}^{2}=16}\end{array}\right.$,
解得$\left\{\begin{array}{l}{x=4}\\{y=0}\end{array}\right.$,或$\left\{\begin{array}{l}{x=-2}\\{y=2\sqrt{3}}\end{array}\right.$.
∴向量$\overrightarrow{b}$=(4,0),或$(-2,2\sqrt{3})$.
∴向量$\overrightarrow{b}$=(4,0),$|\overrightarrow{b}|$=4,$|\overrightarrow{c}|$=2,$\overrightarrow{b}•\overrightarrow{c}$=4,
设向量$\overrightarrow{b}$与$\overrightarrow{c}$的夹角为θ.
cosθ=$\frac{\overrightarrow{b}•\overrightarrow{c}}{|\overrightarrow{b}||\overrightarrow{c}|}$=$\frac{4}{4×2}$=$\frac{1}{2}$,
∴$θ=\frac{π}{3}$.
同理可得:向量$\overrightarrow{b}$=$(-2,2\sqrt{3})$时,θ=$\frac{π}{3}$.
综上可得:向量$\overrightarrow{b}$与$\overrightarrow{c}$的夹角为$\frac{π}{3}$.
点评 本题考查了向量的数量积坐标运算性质、向量夹角公式,考查了推理能力与计算能力,属于中档题.
A. | -$\frac{2π}{3}$ | B. | -$\frac{π}{3}$ | C. | $\frac{π}{3}$ | D. | $\frac{2π}{3}$ |
A. | x=$\frac{π}{6}$ | B. | x=$\frac{π}{4}$ | C. | x=-$\frac{3π}{2}$ | D. | x=-$\frac{2π}{3}$ |