题目内容
已知函数![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025124216152540540/SYS201310251242161525405014_ST/0.png)
(I)求
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025124216152540540/SYS201310251242161525405014_ST/1.png)
(II)求函数f(x)的最小正周期及单调递减区间.
【答案】分析:(I)把x=
直接代入函数的解析式,化简求得f(
)的值.
(II)由cosx≠0,得 x≠kπ+
,(k∈z ).化简函数的解析式为sin(2x+
),从而求得f(x)的最小正周期.再由2kπ+
≤2x+
≤2kπ+
,x≠kπ+
,k∈z,求得x的范围,即可求得函数的减区间.
解答:解:(I)由函数的解析式可得![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025124216152540540/SYS201310251242161525405014_DA/8.png)
=
+
=0+
=
.…(4分)
(II)∵cosx≠0,得 x≠kπ+
,(k∈z )
故f(x)的定义域为{x|x≠kπ+
,(k∈z )}.
因为
=sinx(
cosx-sinx)+
=
sin2x-sin2x+![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025124216152540540/SYS201310251242161525405014_DA/19.png)
=
sin2x-
+
=
sin2x+
cos2x=sin(2x+
),
所以f(x)的最小正周期为 T=
=π.
由2kπ+
≤2x+
≤2kπ+
,x≠kπ+
,k∈z,
得 kπ+
≤x≤kπ+
,x≠kπ+
,k∈z,
所以,f(x)的单调递减区间为 (kπ+
,kπ+
),(kπ+
,kπ+
),k∈z.…(13分)
点评:本题主要考查二倍角公式、两角和差的正弦公式、正弦函数的单调性,属于中档题.
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025124216152540540/SYS201310251242161525405014_DA/0.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025124216152540540/SYS201310251242161525405014_DA/1.png)
(II)由cosx≠0,得 x≠kπ+
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025124216152540540/SYS201310251242161525405014_DA/2.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025124216152540540/SYS201310251242161525405014_DA/3.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025124216152540540/SYS201310251242161525405014_DA/4.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025124216152540540/SYS201310251242161525405014_DA/5.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025124216152540540/SYS201310251242161525405014_DA/6.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025124216152540540/SYS201310251242161525405014_DA/7.png)
解答:解:(I)由函数的解析式可得
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025124216152540540/SYS201310251242161525405014_DA/8.png)
=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025124216152540540/SYS201310251242161525405014_DA/9.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025124216152540540/SYS201310251242161525405014_DA/10.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025124216152540540/SYS201310251242161525405014_DA/11.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025124216152540540/SYS201310251242161525405014_DA/12.png)
(II)∵cosx≠0,得 x≠kπ+
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025124216152540540/SYS201310251242161525405014_DA/13.png)
故f(x)的定义域为{x|x≠kπ+
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025124216152540540/SYS201310251242161525405014_DA/14.png)
因为
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025124216152540540/SYS201310251242161525405014_DA/15.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025124216152540540/SYS201310251242161525405014_DA/16.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025124216152540540/SYS201310251242161525405014_DA/17.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025124216152540540/SYS201310251242161525405014_DA/18.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025124216152540540/SYS201310251242161525405014_DA/19.png)
=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025124216152540540/SYS201310251242161525405014_DA/20.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025124216152540540/SYS201310251242161525405014_DA/21.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025124216152540540/SYS201310251242161525405014_DA/22.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025124216152540540/SYS201310251242161525405014_DA/23.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025124216152540540/SYS201310251242161525405014_DA/24.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025124216152540540/SYS201310251242161525405014_DA/25.png)
所以f(x)的最小正周期为 T=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025124216152540540/SYS201310251242161525405014_DA/26.png)
由2kπ+
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025124216152540540/SYS201310251242161525405014_DA/27.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025124216152540540/SYS201310251242161525405014_DA/28.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025124216152540540/SYS201310251242161525405014_DA/29.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025124216152540540/SYS201310251242161525405014_DA/30.png)
得 kπ+
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025124216152540540/SYS201310251242161525405014_DA/31.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025124216152540540/SYS201310251242161525405014_DA/32.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025124216152540540/SYS201310251242161525405014_DA/33.png)
所以,f(x)的单调递减区间为 (kπ+
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025124216152540540/SYS201310251242161525405014_DA/34.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025124216152540540/SYS201310251242161525405014_DA/35.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025124216152540540/SYS201310251242161525405014_DA/36.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025124216152540540/SYS201310251242161525405014_DA/37.png)
点评:本题主要考查二倍角公式、两角和差的正弦公式、正弦函数的单调性,属于中档题.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目