题目内容
17.解方程:(1)$\left\{\begin{array}{l}{{x}^{2}+{y}^{2}=4}\\{2xy=-21}\end{array}\right.$
(2)$\left\{\begin{array}{l}{x-y=5}\\{2xy=-21}\end{array}\right.$.
分析 直接利用曲线方程,求解方程组的解集即可.
解答 解:(1)$\left\{\begin{array}{l}{x}^{2}+{y}^{2}=4…①\\ 2xy=-21…②\end{array}\right.$,由②可得,$x=-\frac{21}{2y}$,代入①化简可得:4y4-16y2+21=0,∵△=162-4×212<0
∴方程组无解.
(2)$\left\{\begin{array}{l}{x-y=5}\\{2xy=-21}\end{array}\right.$.可得2(5+y)y=-21,
解得2y2+10y+21=0,∵△=100-168<0,
所以方程组无解.
点评 本题考查曲线与方程的关系,曲线交点的求法,考查计算能力.
练习册系列答案
相关题目
5.已知圆的参数方程$\left\{\begin{array}{l}{x=2cosθ+2}\\{y=2sinθ-1}\end{array}\right.$,则该圆的圆心为( )
A. | (-2,1) | B. | (2,-1) | C. | (2,1) | D. | (-2,-1) |
6.函数f(x)=$\left\{\begin{array}{l}{2{x}^{2}-8ax+3(x<1)}\\{lo{g}_{a}x-1(x≥1)}\end{array}\right.$在x∈R内单调递减,则实数a的取值范围是( )
A. | (0,$\frac{1}{2}$] | B. | [$\frac{1}{2},1$) | C. | [$\frac{1}{2}$,$\frac{3}{4}$] | D. | [$\frac{3}{4}$,1) |