题目内容
16.若直线a不平行于平面α,则下列结论成立的是( )A. | α内所有的直线都与a异面 | B. | α内不存在与a平行的直线 | ||
C. | α内所有的直线都与a相交 | D. | 直线a与平面α有公共点 |
分析 根据空间线面关系,直线a与平面α不平行,包含两种位置关系;一是直线a在平面内,另一个是直线a与α相交;由此解答.
解答 解:因为直线a与平面α不平行,所以直线a在平面内,或者直线a于α相交,所以直线a与平面α至少有一个交点;
故选D.
点评 本题考查了空间线面关系;在空间,直线与平面有:相交、平行或者在平面内,其中直线与平面不平行包括直线与平面相交和在平面内.
练习册系列答案
相关题目
11.不等式$\frac{x-3}{x+2}$≤0的解集为( )
A. | {x|-2<x≤3} | B. | {x|-2≤x≤3} | C. | {x|x<-2或x>3} | D. | {x|-2<x<3} |
8.若函数f(x)=sin ax+$\sqrt{3}$cos ax(a>0)的最小正周期为2,则函数f(x)的一个零点为( )
A. | -$\frac{π}{3}$ | B. | $\frac{2}{3}$ | C. | ($\frac{2}{3}$,0) | D. | (0,0) |
5.设x=$\sqrt{3}$,y=log32,z=cos3,则( )
A. | z<y<x | B. | z<x<y | C. | y<z<x | D. | x<z<y |