题目内容
【题目】如图,四棱锥M-ABCD中,MB⊥平面ABCD,四边形ABCD是矩形,AB=MB,E、F分别为MA、MC的中点.
(1)求证:平面BEF⊥平面MAD;
(2)若,求三棱锥E-ABF的体积.
【答案】(1)见解析;(2)
【解析】
(1)先证明BE⊥平面MAD,再证平面BEF⊥平面MAD;(2)利用体积变换求三棱锥E-ABF的体积.
(1)因为MB⊥平面ABCD,所以MB⊥AD,
又因为四边形ABCD是矩形,所以AD⊥AB,
因为AB∩MB=B,所以AD⊥平面MAB,
因为BE平面MAB,所以AD⊥BE,
又因为AB=MB,E为MA的中点,
所以BE⊥MA,因为MA∩AD=A,
所以BE⊥平面MAD,
又因为BE平面BEF,
所以平面BEF⊥平面MAD.
(2)因为AD∥BC,所以BC⊥面MAB,又因为F为MC的中点,
所以F到面MAB的距离,
又因为MB⊥平面ABCD,AB=MB=,E为MA的中点,
所以,
所以.
【题目】国家统计局进行第四次经济普查,某调查机构从15个发达地区,10个欠发达地区,5个贫困地区中选取6个作为国家综合试点地区,然后再逐级确定普查区域,直到基层的普查小区.普查过程中首先要进行宣传培训,然后确定对象,最后入户登记,由于种种情况可能会导致入户登记不够顺利,这为正式普查提供了宝贵的试点经验,在某普查小区,共有50家企事业单位,150家个体经营户,普查情况如下表所示:
普查对象类别 | 顺利 | 不顺利 | 合计 |
企事业单位 | 40 | 10 | 50 |
个体经营户 | 90 | 60 | 150 |
合计 | 130 | 70 | 200 |
(1)写出选择6个国家综合试点地区采用的抽样方法;
(2)根据列联表判断是否有97.5%的把握认为“此普查小区的入户登记是否顺利与普查对象的类别有关”,分析造成这个结果的原因并给出合理化建议.
附:参考公式: ,其中
参考数据:
| 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 |
| 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 |
【题目】某网站针对“2014年法定节假日调休安排”展开的问卷调查,提出了A、B、C三种放假方案,调查结果如下:
支持A方案 | 支持B方案 | 支持C方案 | |
35岁以下 | 200 | 400 | 800 |
35岁以上(含35岁) | 100 | 100 | 400 |
(1)在所有参与调查的人中,用分层抽样的方法抽取n个人,已知从“支持A方案”的人中抽取了6人,求n的值;
(2)在“支持B方案”的人中,用分层抽样的方法抽取5人看作一个总体,从这5人中任意选取2人,求恰好有1人在35岁以上(含35岁)的概率.
【题目】某地区高考实行新方案,规定:语文、数学和英语是考生的必考科目,考生还须从物理、化学、生物、历史、地理和政治六个科目中选取三个科目作为选考科目.若一名学生从六个科目中选出了三个科目作为选考科目,则称该学生的选考方案确定;否则,称该学生选考方案待确定.例如,学生甲选择“物理、化学和生物”三个选考科目,则学生甲的选考方案确定,“物理、化学和生物”为其选考方案.
某学校为了了解高一年级420名学生选考科目的意向,随机选取30名学生进行了一次调查,统计选考科目人数如下表:
性别 | 选考方案确定情况 | 物理 | 化学 | 生物 | 历史 | 地理 | 政治 |
男生 | 选考方案确定的有6人 | 6 | 6 | 3 | 1 | 2 | 0 |
选考方案待确定的有8人 | 5 | 4 | 0 | 1 | 2 | 1 | |
女生 | 选考方案确定的有10人 | 8 | 9 | 6 | 3 | 3 | 1 |
选考方案待确定的有6人 | 5 | 4 | 0 | 0 | 1 | 1 |
(Ⅰ)试估计该学校高一年级确定选考生物的学生有多少人?
(Ⅱ)写出选考方案确定的男生中选择“物理、化学和地理”的人数.(直接写出结果)
(Ⅲ)从选考方案确定的男生中任选2名,试求出这2名学生选考科目完全相同的概率.