题目内容
【题目】已知极点为直角坐标系的原点,极轴为轴正半轴且单位长度相同的极坐标系中曲线,(为参数).
(Ⅰ)求曲线上的点到曲线距离的最小值;
(Ⅱ)若把上各点的横坐标都扩大原来为原来的2倍,纵坐标扩大原来的倍,得到曲线,设,曲线与交于,两点,求.
【答案】(Ⅰ);(Ⅱ)
【解析】
(Ⅰ)求出曲线C1的直角坐标方程为:x2+y2=1,C2:y=x+2,再求出圆心到直线距离,由此能求出曲线C1上的点到曲线C2距离的最小值;
(Ⅱ)利用伸缩变换得到,把(为参数)化成标准方程为:, 代入曲线,得.由此能求出|PA|+|PB|.
(Ⅰ),圆心为,半径为,
圆心到直线距离,所以上的点到的最小距离为;
(Ⅱ)伸缩变换为,所以
把(为参数)化成标准方程为:,
将和联立,得.因为
【题目】已知某中学高三文科班学生共有800人参加了数学与地理的水平测试,学校决定利用随机数表法从中抽取100人进行成绩抽样调查,先将800人按001,002,…,800进行编号.
(1)如果从第8行第7列的数开始向右读,请你依次写出最先检查的3个人的编号;
(下面摘取了第7行到第9行)
84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 76
63 01 63 78 59 16 95 56 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 79
33 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 54
(2)抽取的100人的数学与地理的水平测试成绩如下表:
成绩分为优秀、良好、及格三个等级;横向,纵向分别表示地理成绩与数学成绩,例如:表中数学成绩为良好的共有20+18+4=42.
人数 | 数学 | |||
优秀 | 良好 | 及格 | ||
| 优秀 | 7 | 20 | 5 |
良好 | 9 | 18 | 6 | |
及格 | a | 4 | b |
①若在该样本中,数学成绩优秀率是30%,求a,b的值:
②在地理成绩及格的学生中,已知求数学成绩优秀的人数比及格的人数少的概率.
【题目】党的十九大明确把精准脱贫作为决胜全面建成小康社会必须打好的三大攻坚战之一,为坚决打赢脱贫攻坚战,某帮扶单位为帮助定点扶贫村扶贫,此帮扶单位为了解该村贫困户对其所提供帮扶的满意度,随机调查了40个贫困户,得到贫困户的满意度评分如下:
贫困户 编号 | 评分 | 贫困户 编号 | 评分 | 贫困户 编号 | 评分 | 贫困户 编号 | 评分 | |||
1 | 78 | 11 | 88 | 21 | 79 | 31 | 93 | |||
2 | 73 | 12 | 86 | 22 | 83 | 32 | 78 | |||
3 | 81 | 13 | 95 | 23 | 72 | 33 | 75 | |||
4 | 92 | 14 | 76 | 24 | 74 | 34 | 81 | |||
5 | 86 | 15 | 80 | 25 | 93 | 35 | 89 | |||
6 | 85 | 16 | 78 | 26 | 66 | 36 | 77 | |||
7 | 79 | 17 | 88 | 27 | 80 | 37 | 81 | |||
8 | 84 | 18 | 82 | 28 | 83 | 38 | 76 | |||
9 | 63 | 19 | 76 | 29 | 74 | 39 | 85 | |||
10 | 85 | 20 | 87 | 30 | 82 | 40 | 78 |
用系统抽样法从40名贫困户中抽取容量为8的样本,且在第一分段里随机抽到的评分数据为86.
(1)请你列出抽到的8个样本的评分数据;
(2)计算所抽到的8个样本的均值和方差;
(3)在(2)条件下,若贫困户的满意度评分在之间,则满意度等级为“A级”.运用样本估计总体的思想,现从(1)中抽到的8个样本的满意度为“A级”贫困户中随机地抽取2户,求所抽到2户的满意度评分均“超过85”的概率.(参考数据:,,)