题目内容
如图1,在直角梯形
中,
,
,
,
. 把
沿对角线
折起到
的位置,如图2所示,使得点
在平面
上的正投影
恰好落在线段
上,连接
,点
分别为线段
的中点.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240305487886082.png)
(1)求证:平面
平面
;
(2)求直线
与平面
所成角的正弦值;
(3)在棱
上是否存在一点
,使得
到点
四点的距离相等?请说明理由.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030548554508.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030548601780.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030548601627.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030548617462.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030548632459.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030548648538.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030548663397.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030548679522.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030548695270.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030548695463.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030548726290.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030548663397.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030548741362.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030548757403.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030548773507.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240305487886082.png)
(1)求证:平面
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030548804506.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030548804441.png)
(2)求直线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030548819373.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030548835413.png)
(3)在棱
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030548851366.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030548866391.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030548866391.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030548897553.png)
(1)证明过程详见解析;(2)正弦值为
;(3)存在,点E即为所求.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030548897478.png)
试题分析:本题以三棱锥为几何背景考查面面平行和二面角的求法,可以运用传统几何法,也可以用空间向量法求解,突出考查空间想象能力和计算能力.第一问,首先由点
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030548913290.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030548929316.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030548944406.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030548960392.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030548975466.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030548991541.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030549007465.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030549022692.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030549022525.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030548929316.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030548944406.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030549085551.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030549100566.png)
利用面面平行的判定得出证明;第二问,先建立空间直角坐标系,写出所需点的坐标,先设出平面
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030549116429.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030549131315.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030549147916.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030549131315.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030549163401.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030549131315.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030549194739.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030549209320.png)
试题解析:(I)因为点
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030549209288.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030548695463.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030549256306.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030549256398.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030549272392.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030548695463.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030549272392.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030549256398.png)
因为在直角梯形
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030549428516.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030548601780.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030549475618.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030549490462.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030549506465.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030549521464.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030549553691.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030549568546.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030549256306.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030549256398.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030549615569.png)
同理可证
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030549631551.png)
又
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030549662862.png)
所以平面
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030549693494.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030548804441.png)
(II)在平面
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030548695463.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030549256306.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030549256398.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030549771586.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030549787650.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030549818606.png)
因为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030549833627.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030549833710.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240305498654324.png)
设平面
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030549865423.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030549880630.png)
因为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030549896702.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030549911746.png)
所以有
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030549927838.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030549943851.png)
令
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030549958438.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030549974424.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030549974631.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240305500051523.png)
所以直线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030549163401.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030549116429.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030548897478.png)
(III)存在,事实上记点
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030550177320.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030550177399.png)
因为在直角三角形
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030550192427.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030550208883.png)
在直角三角形
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030549865423.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030550239464.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030550255710.png)
所以点
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030550177320.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030550286545.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目