题目内容

【题目】请你设计一个包装盒,如图所示,ABCD是边长为60cm的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得A,B,C,D四个点重合于图中的点P,正好形成一个正四棱柱形状的包装盒,E、F在AB上,是被切去的等腰直角三角形斜边的两个端点,设AE=FB=x(cm).
(1)若广告商要求包装盒侧面积S(cm2)最大,试问x应取何值?
(2)若广告商要求包装盒容积V(cm3)最大,试问x应取何值?并求出此时包装盒的高与底面边长的比值.

【答案】
(1)解:设包装盒的高为h(cm),底面边长为a(cm),则a= x,h= (30﹣x),0<x<30.

S=4ah=8x(30﹣x)=﹣8(x﹣15)2+1800,

∴当x=15时,S取最大值


(2)解:V=a2h=2 (﹣x3+30x2),V′=6 x(20﹣x),

由V′=0得x=20,

当x∈(0,20)时,V′>0;当x∈(20,30)时,V′<0;

∴当x=20时,包装盒容积V(cm3)最大,

此时,

即此时包装盒的高与底面边长的比值是


【解析】(1)可设包装盒的高为h(cm),底面边长为a(cm),写出a,h与x的关系式,并注明x的取值范围.再利用侧面积公式表示出包装盒侧面积S关于x的函数解析式,最后求出何时它取得最大值即可;(2)利用体积公式表示出包装盒容积V关于x的函数解析式,最后利用导数知识求出何时它取得的最大值即可.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网