题目内容

已知是正数组成的数列,,且点在函数的图象上.
(1)求数列的通项公式;
(2)若列数满足,,求证:
解法一:(Ⅰ)由已知得an+1=an+1、即an+1-an=1,又a1=1,
所以数列{an}是以1为首项,公差为1的等差数列.
an=1+(a-1)×1=n.
(Ⅱ)由(Ⅰ)知:an=n从而bn+1-bn=2n.
bn=(bn-bn-1)+(bn-1-bn-2)+···+(b2-b1)+b1=2n-1+2n-2+···+2+1==2n-1.
因为bn·bn+2-b=(2n-1)(2n+2-1)-(2n-1-1)2=(22n+2-2n+2-2n+1)-(22n+2-2-2n+1-1)=-5·2n+4·2n=-2n<0,
所以bn·bn+2<b,
解法二:(Ⅰ)同解法一.
(Ⅱ)因为b2=1,
bn·bn+2- b=(bn+1-2n)(bn+1+2n+1)- b=2n+1·bn-1-2n·bn+1-2n·2n+1=2nbn+1-2n+1)=2nbn+2n-2n+1
=2nbn-2n)=…=2nb1-2)=-2n〈0,所以bn-bn+2<b2n+1
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网