题目内容

4.直线y=3x+1是曲线y=x3-a的一条切线,则实数a的值为-3或1.

分析 先对y=x3-a进行求导,设出切点,然后令导函数等于3求出切点坐标,代入到曲线方程可得答案.

解答 解:设切点为P(x0,y0),
对y=x3-a求导数是y'=3x2
由题意可得3x02=3.∴x0=±1.
(1)当x=1时,
∵P(x0,y0)在y=3x+1上,
∴y=3×1+1=4,即P(1,4).
又P(1,4)也在y=x3-a上,
∴4=13-a.∴a=-3.
(2)当x=-1时,
∵P(x0,y0)在y=3x+1上,
∴y=3×(-1)+1=-2,即P(-1,-2).
又P(-1,-2)也在y=x3-a上,
∴-2=(-1)3-a.∴a=1.
综上可知,实数a的值为-3或1.
故答案为:-3或1.

点评 本题考查导数的运用,主要考查导数的几何意义,即函数在某点的导数值等于以该点为切点的切线的斜率,注意设出切点,考查运算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网