题目内容
【题目】已知圆,直线过点.
(1)若直线与圆相切,求直线的方程;
(2)若直线与圆交于两点,当的面积最大时,求直线的方程.
【答案】(1)或;(2)或.
【解析】
(1)分直线l的斜率不存在与直线l的斜率存在两种讨论,根据直线l与圆M相切进行计算,可得直线的方程;
(2)设直线l的方程为,圆心到直线l的距离为d,可得的长,由的面积最大,可得,可得k的值,可得直线的方程.
解:(1)当直线l的斜率不存在时,直线l的方程为,此时直线l与圆M相切,所以符合题意 ,
当直线l的斜率存在时,设l的斜率为k,
则直线l的方程为,
即 ,
因为直线l与圆M相切,所以圆心到直线的距离等于圆的半径,
即,
解得,即直线l的方程为;
综上,直线l的方程为或,
(2)因为直线l与圆M交于P.Q两点,所以直线l的斜率存在,
可设直线l的方程为,圆心到直线l的距离为d ,
则 ,
从而的面积为·
当时,的面积最大 ,
因为,
所以,
解得或,
故直线l的方程为或.
练习册系列答案
相关题目