ÌâÄ¿ÄÚÈÝ
(Àí)ÒÑÖªÇúÏßC:f(x)=x2,CÉϵãA¡¢AnµÄºá×ø±ê·Ö±ðΪ1ºÍan(n¡ÊN*),ÇÒa1=5,xn+1=af(xn-1)+1(a£¾0,a¡Ù,a¡Ù1).¼ÇÇø¼äDn=£Û1,an£Ý(an£¾1).µ±x¡ÊDnʱ,ÇúÏßCÉÏ´æÔÚµãPn(xn,f(xn)),ʹµÃµãPn´¦µÄÇÐÏßÓëÖ±ÏßAAnƽÐÐ.(1)ÊÔÅжÏ:ÊýÁÐ{loga(xn-1)+1}ÊÇʲôÊýÁÐ;
(2)µ±DnDn+1¶ÔÒ»ÇÐn¡ÊN*ºã³ÉÁ¢Ê±,ÇóʵÊýaµÄÈ¡Öµ·¶Î§;
(3)¼ÇÊýÁÐ{an}µÄÇ°nÏîºÍΪSn,µ±a=ʱ,ÊԱȽÏSnÓën+7µÄ´óС,²¢ËµÃ÷ÄãµÄ½áÂÛ.
(ÎÄ)ÒÑÖªf(x)=ax3+bx2+cx+d(a¡Ù0)ÊǶ¨ÒåÔÚRÉϵĺ¯Êý,ÆäͼÏó½»xÖáÓÚA¡¢B¡¢CÈýµã.ÈôµãBµÄ×ø±êΪ(2,0),ÇÒf(x)ÔÚ£Û-1,0£ÝºÍ£Û4,5£ÝÉÏÓÐÏàͬµÄµ¥µ÷ÐÔ,ÔÚ£Û0,2£ÝºÍ£Û4,5£ÝÉÏÓÐÏà·´µÄµ¥µ÷ÐÔ.
(1)ÇócµÄÖµ.
(2)ÔÚº¯Êýf(x)µÄͼÏóÉÏÊÇ·ñ´æÔÚÒ»µãM(x0,y0),ʹµÃf(x)ÔÚµãM´¦µÄÇÐÏßбÂÊΪ3b?Èô´æÔÚ,Çó³öµãMµÄ×ø±ê;Èô²»´æÔÚ,Çë˵Ã÷ÀíÓÉ.
(3)Çó|AC|µÄÈ¡Öµ·¶Î§.
´ð°¸£º(Àí)½â:(1)ÊǵȱÈÊýÁÐ.2·ÖÓɵãPn´¦µÄÇÐÏßÓëÖ±ÏßAAnƽÐпÉÖª,xn=.
ÓÉxn+1=af(xn-1)+1(a£¾0,a¡Ù,a¡Ù1)¿ÉÖªxn+1-1=a(xn-1)2,Ôòloga(xn+1-1)=2loga(xn-1)+1.Éèbn=loga(xn-1),Ôòbn+1+1=2(bn+1).ÓÖb1=loga(x1-1)=loga2,Òò´ËÊýÁÐ{bn+1}ÊÇÒÔb1+1ΪÊ×Ïî,2Ϊ¹«±ÈµÄµÈ±ÈÊýÁÐ,¼´{loga(xn-1)+1}ÊǵȱÈÊýÁÐ.
Ôòbn+1=(loga2+1)¡¤2n-1,¼´bn=(loga2+1)¡¤2n-1-1=loga,¡àxn=1+.
(2)ÓÉÌõ¼þxn=¿ÉÖªan=1+.ÓÉDnDn+1Öªan£¾an+1,¼´ £Û1-£Ý£¾0,Ôò£Û1-£Ý£¾0,¼´0£¼a£¼.
(3)ÊýÁÐ{an}µÄÇ°nÏîºÍSn,µ±a=ʱ,an=1+=1+8.
Sn=n+8£Û+()2+()4+¡+£Ý.¿ÉÒÔÖ¤Ã÷:µ±n¡Ý4,ÓÐ2n-1£¾n+1;¡àµ±n¡Ü3ʱ,Sn¡Ün+8£Û+()2+()4£Ý=n+£¼n+7;
µ±n¡Ý4ʱ,Sn£¼n+8£Û+()2+()4+()5+()6+¡+()n+1£Ý=n+7-()n-2£¼n+7,ÔòSn£¼n+7.
(ÎÄ)½â£º(1)¡ßf(x)ÔÚ£Û-1,0£ÝºÍ£Û0,2£ÝÉÏÓÐÏà·´µÄµ¥µ÷ÐÔ,¡àx=0ÊÇf(x)µÄÒ»¸ö¼«Öµµã.¹Êf¡ä(0)=0,2·Ö¼´3ax2+2bx+c=0ÓÐÒ»¸ö½âx=0,Ôòc=0.
(2)¡ßf(x)½»xÖáÓÚµãB(2,0),¡à8a+4b+d=0,¼´d=-4(b+2a).Áîf¡ä(x)=0µÃ3ax2+2bx=0,x1=0,x2=.
¡ßf(x)ÔÚ£Û0,2£ÝºÍ£Û4,5£ÝÉÏÓÐÏà·´µÄµ¥µ÷ÐÔ,¡à¡à-6¡Ü¡Ü-3.
¼ÙÉè´æÔÚµãM(x0,y0),ʹµÃf(x)ÔÚµãM´¦µÄÇÐÏßбÂÊΪ3b,Ôòf¡ä(x0)=3b,¼´3ax02+2bx0-3b=0.
¡ß¦¤=(2b)2-4¡Á3a¡Á(-3b)=4b2+36ab=4ab(+9),¶ø-6¡Ü¡Ü-3,¡à¦¤£¼0.¹Ê²»´æÔÚµãM(x0,y0),ʹµÃf(x)ÔÚµãM´¦µÄÇÐÏßбÂÊΪ3b.
(3)ÉèA(¦Á,0),C(¦Â,0),ÒÀÌâÒâ¿ÉÁîf(x)=a(x-¦Á)(x-2)(x-¦Â)=a£Ûx3-(2+¦Á+¦Â)x2+(2¦Á+2¦Â+¦Á¦Â)x-2¦Á¦Â£Ý,
Ôò¼´¡à|AC|=|¦Á-¦Â|=
==.¡²¡ßd=-4(b+2a)¡³¡ß-6¡Ü¡Ü-3,¡àµ±=-6ʱ,|AC|max=;µ±=-3ʱ,|AC|min=3.¹Ê3¡Ü|AC|¡Ü.
|