题目内容

精英家教网给出下列5个命题:
①0<a≤
1
5
是函数f(x)=ax2+2(a-1)x+2在区间(-∞,4]上为单调减函数的充要条件;
②如图所示,“嫦娥探月卫星”沿地月转移轨道飞向月球,在月球附近一点P进入以月球球心F为一个焦点的椭圆轨道I绕月飞行,之后卫星在P点第二次变轨进入仍以F为一个焦点的椭圆轨道II绕月飞行,最终卫星在P点第三次变轨进入以F为圆心的圆形轨道III绕月飞行,若用2Cl和2c2分别表示摘圆轨道I和II的焦距,用2a1和2a2分别表示椭圆轨道I和II的长轴的长,则有c1a2>a1c2
③函数y=f(x)与它的反函数y=f-1(x)的图象若相交,则交点必在直线y=x上;
④己知函数f(x)=loga(1-ax)在(O,1)上满足,f′(x)>0,贝U
1
1-a
>1+a>
2a

⑤函数f(x)=
tan2x+
(1+i)2
i
+1
tan2x+2
(x≠kπ+
π
2
),k∈Z,/为虚数单位)的最小值为2;
其中所有真命题的代号是
 
分析:①利用二次函数的性质,由其在区间(-∞,4]上为单调减函数解出参数的取值范围,依据依据充要条件的定义进行判断即可
②由椭圆的性质进行判断即可;
③利用特例说明其不成立即可;
④利用对数函数单调性的性质进行判断即可得到结论;
⑤化简,构造出积为定值的形式用基本不等式判断出最小值是否是2.
解答:解:对于①:函数f(x)=ax2+2(a-1)x+2在区间(-∞,4]上为单调减函数,若a=0时成立,若a>0时,必有
a-1
a
4解得a≤-
1
3
无解,故可得出a=0,由此知①中的条件与结论之间是既不充分也不必要条件.故不是真命题;
②由椭圆的性质知a1-Cl=a2-c2,即有a2+Cl=a1+c2,此四数构成一个等差数列,由基本不等式得c1a2>a1c2,故此命题正确;
③y=f(x)与它的反函数y=f-1(x)的图象图象重合时,其公共点可以不在y=x上;
④导数大于0,说明对数函数在(O,1)上是增函数,又内层函数减,故外层函数减,所以a∈(O,1),验证知
1
1-a
>1+a>
2a
成立,故命题正确;
⑤函数f(x)=
tan2x+
(1+i)2
i
+1
tan2x+2
=
tan2x+3
tan2x+2
=
1
tan2x+2
+
tan 2x+2
≥2,由于
1
tan2x+2
=
tan 2x+2
不成立,故最小值取不到.此命题不正确.
综上②④是正确命题
故答案为②④
点评:本题作为一个判断命题真假的题目,涉及到了函数的单调性椭圆的性质等内容,题目较难判断,每一个知识点都是高考中比较重要的,从中总结下对命题的考试与这些知识的衔接吧.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网