题目内容

【题目】在△ABC中,内角A,B,C的对边分别为a,b,c.已知
(1)求 的值;
(2)若cosB= ,△ABC的周长为5,求b的长.

【答案】
(1)解:因为 所以

即:cosAsinB﹣2sinBcosC=2sinCcosB﹣cosBsinA

所以sin(A+B)=2sin(B+C),即sinC=2sinA

所以 =2


(2)解:由(1)可知c=2a…①

a+b+c=5…②

b2=a2+c2﹣2accosB…③

cosB= …④

解①②③④可得a=1,b=c=2;

所以b=2


【解析】(1)利用正弦定理化简等式的右边,然后整理,利用两角和的正弦函数求出 的值.(2)利用(1)可知c=2a,结合余弦定理,三角形的周长,即可求出b的值.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网