题目内容
【题目】选修4-5:不等式选讲
已知函数.
(1)解不等式;
(2)若关于的方程的解集为空集,求实数的取值范围.
【答案】(1) (2)
【解析】试题分析:(1)根据绝对值定义将不等式化为三个不等式组,分别求解,最后求并集(2)先根据绝对值定义将函数化为分段函数,求对应函数值域,即得f(x)﹣4的取值范围,根据倒数性质可得取值范围,最后根据方程解集为空集,确定实数的取值范围
试题解析:解:(1)解不等式|x﹣2|+|2x+1|>5,
x≥2时,x﹣2+2x+1>5,解得:x>2;
﹣<x<2时,2﹣x+2x+1>5,无解,
x≤﹣时,2﹣x﹣2x﹣1>5,解得:x<﹣,
故不等式的解集是(﹣∞,﹣)∪(2,+∞);
(2)f(x)=|x﹣2|+|2x+1|=,
故f(x)的最小值是,所以函数f(x)的值域为[,+∞),
从而f(x)﹣4的取值范围是[﹣,+∞),
进而的取值范围是(﹣∞,﹣]∪(0,+∞).
根据已知关于x的方程=a的解集为空集,所以实数a的取值范围是(﹣,0].
练习册系列答案
相关题目