题目内容
将参数方程(θ为参数)化为普通方程.
y=x-2,x∈[2,3],y∈[0,1].
解析
已知直线: (为参数),与曲线:交于、两点,是平面内的一个定点,则
已知曲线C的极坐标方程是,以极点为平面直角坐标系的原点,极轴为轴的正半轴建立平面直角坐标系,直线L的参数方程是(t是参数)(1)将曲线C的极坐标方程和直线L参数方程转化为普通方程;(2)若直线L与曲线C相交于M、N两点,且,求实数m的值.
已知点P(x,y)是圆x2+y2=2y上的动点.(1)求2x+y的取值范围;(2)若x+y+a≥0恒成立,求实数a的取值范围.
在平面直角坐标系中,以坐标原点为极点,x轴的非负半轴为极轴建立极坐标系.已知点A的极坐标为(,),直线l的极坐标方程为ρcos()=a,且点A在直线l上.(1)求a的值及直线l的直角坐标方程;(2)圆C的参数方程为(为参数),试判断直线l与圆C的位置关系.
将参数方程化为普通方程,并说明它表示的图形.
求过点A(3,)且和极轴成角的直线.
在直角坐标系中,曲线的参数方程为为参数),以该直角坐标系的原点为极点,轴的正半轴为极轴的极坐标系下,曲线的方程为.(1)求曲线的普通方程和曲线的直角坐标方程;(2)设曲线和曲线的交点、,求.
已知直线是过点,方向向量为的直线。圆方程(1)求直线l的参数方程;(2)设直线l与圆相交于、两点,求的值。