ÌâÄ¿ÄÚÈÝ
ÏÖÓмס¢ÒÒÁ½¸ö°Ð£¬Ä³ÉäÊÖ½øÐÐÉä»÷ѵÁ·£¬Ã¿´ÎÉä»÷»÷ÖмװеĸÅÂÊÊÇp1£¬Ã¿´ÎÉä»÷»÷ÖÐÒҰеĸÅÂÊÊÇp2£¬ÆäÖÐp1£¾p2£¬ÒÑÖª¸ÃÉäÊÖÏȺóÏò¼×¡¢ÒÒÁ½°Ð¸÷Éä»÷Ò»´Î£¬Á½´Î¶¼ÄÜ»÷ÖÐÓëÁ½´Î¶¼²»ÄÜ»÷ÖеĸÅÂÊ·Ö±ðΪ
£¬
£®¸ÃÉäÊÖÔÚ½øÐÐÉä»÷ѵÁ·Ê±¸÷´ÎÉä»÷½á¹û»¥²»Ó°Ï죮
£¨¢ñ£©Çóp1£¬p2µÄÖµ£»
£¨¢ò£©¼ÙÉè¸ÃÉäÊÖÉä»÷ÒÒ°ÐÈý´Î£¬Ã¿´ÎÉä»÷»÷ÖÐÄ¿±êµÃ1·Ö£¬Î´»÷ÖÐÄ¿±êµÃ0·Ö£®ÔÚÈý´ÎÉä»÷ÖУ¬ÈôÓÐÁ½´ÎÁ¬Ðø»÷ÖУ¬¶øÁíÍâÒ»´Îδ»÷ÖУ¬Ôò¶îÍâ¼Ó1·Ö£»ÈôÈý´ÎÈ«»÷ÖУ¬Ôò¶îÍâ¼Ó3·Ö£®¼Ç¦ÇΪ¸ÃÉäÊÖÉä»÷Èý´ÎºóµÄ×ܵķÖÊý£¬Çó¦ÇµÄ·Ö²¼ÁУ»
£¨¢ó£©Ä³Ñо¿Ð¡×é·¢ÏÖ£¬¸ÃÉäÊÖÔÚn´ÎÉä»÷ÖУ¬»÷ÖÐÄ¿±êµÄ´ÎÊýX·þ´Ó¶þÏî·Ö²¼£®ÇÒÉä»÷¼×°Ð10´Î×îÓпÉÄÜ»÷ÖÐ8´Î£¬Éä»÷ÒÒ°Ð10´Î×îÓпÉÄÜ»÷ÖÐ7´Î£®ÊÔ̽¾¿£ºÈç¹ûX£ºB£¨n£¬p£©£¬ÆäÖÐ0£¼p£¼1£¬ÇóʹP£¨X=k£©£¨0¡Ük¡Ün£©×î´ó×ÔÈ»Êýk£®
8 |
15 |
1 |
15 |
£¨¢ñ£©Çóp1£¬p2µÄÖµ£»
£¨¢ò£©¼ÙÉè¸ÃÉäÊÖÉä»÷ÒÒ°ÐÈý´Î£¬Ã¿´ÎÉä»÷»÷ÖÐÄ¿±êµÃ1·Ö£¬Î´»÷ÖÐÄ¿±êµÃ0·Ö£®ÔÚÈý´ÎÉä»÷ÖУ¬ÈôÓÐÁ½´ÎÁ¬Ðø»÷ÖУ¬¶øÁíÍâÒ»´Îδ»÷ÖУ¬Ôò¶îÍâ¼Ó1·Ö£»ÈôÈý´ÎÈ«»÷ÖУ¬Ôò¶îÍâ¼Ó3·Ö£®¼Ç¦ÇΪ¸ÃÉäÊÖÉä»÷Èý´ÎºóµÄ×ܵķÖÊý£¬Çó¦ÇµÄ·Ö²¼ÁУ»
£¨¢ó£©Ä³Ñо¿Ð¡×é·¢ÏÖ£¬¸ÃÉäÊÖÔÚn´ÎÉä»÷ÖУ¬»÷ÖÐÄ¿±êµÄ´ÎÊýX·þ´Ó¶þÏî·Ö²¼£®ÇÒÉä»÷¼×°Ð10´Î×îÓпÉÄÜ»÷ÖÐ8´Î£¬Éä»÷ÒÒ°Ð10´Î×îÓпÉÄÜ»÷ÖÐ7´Î£®ÊÔ̽¾¿£ºÈç¹ûX£ºB£¨n£¬p£©£¬ÆäÖÐ0£¼p£¼1£¬ÇóʹP£¨X=k£©£¨0¡Ük¡Ün£©×î´ó×ÔÈ»Êýk£®
£¨¢ñ£©¼Ç¡°¸ÃÉäÊÖÏò¼×°ÐÉä»÷Ò»´Î²¢»÷ÖС±ÎªÊ¼þA£¬
¡°¸ÃÉäÊÖÏòÒÒ°ÐÉä»÷Ò»´Î²¢»÷ÖС±ÎªÊ¼þB£¬
ÔòÓÉÌâÒâµÃ£¬
£¬
Óɸ÷´ÎÉä»÷½á¹û»¥²»Ó°ÏìµÃ
£¬
¼´
£¬
½âµÃp1=
£¬p2=
£®¡£¨3·Ö£©
£¨¢ò£©¦ÇµÄËùÓпÉÄÜȡֵΪ0£¬1£¬2£¬3£¬6£®¡£¨4·Ö£©
¼Ç¡°¸ÃÉäÊÖµÚi´ÎÉä»÷»÷ÖÐÄ¿±ê¡±ÎªÊ¼þAi£¨i=1£¬2£¬3£©£¬
ÔòP(¦Ç=0)=P(
)=(1-
)3=
£¬P(¦Ç=1)=P(A1
+
A2
+
A3)=P(A1
)+P(
A2
)+P(
A3)
=
¡Á(1-
)2+(1-
)¡Á
¡Á(1-
)+(1-
)2¡Á
=
£¬P(¦Ç=2)=P(A1
A3)=
¡Á(1-
)¡Á
=
£¬P(¦Ç=3)=P(A1A2
+
A2A3)=P(A1A2
)+P(
A2A3)=(
)2¡Á(1-
)+(1-
)¡Á(
)2=
£¬P(¦Ç=6)=P(A1A2A3)=(
)3=
£®
ËùÒԦǵķֲ¼ÁÐΪ£º
¡£¨9·Ö£©
£¨¢ó£©¿¼²ì²»µÈʽ
=
=
•
¡Ý1£¬
µÃk¡Ü£¨n+1£©p-1£®
¢ÙÈç¹û£¨n+1£©pÊÇÕýÕûÊý£¬ÄÇô£¨n+1£©p-1Ò²ÊÇÕýÕûÊý£®
´Ëʱ£¬¿ÉÒÔʹ£ºk=£¨n+1£©p-1£¬¼´k+1=£¨n+1£©p£¬
ÇÒP£¨X=k+1£©=P£¨X=k£©£®
Ôòµ±kÈ¡£¨n+1£©p»ò£¨n+1£©p-1ʱ£¬P£¨X=k£©È¡×î´óÖµ£®
¢ÚÈç¹û£¨n+1£©p²»ÊÇÕýÕûÊý£¬ÄÇô²»µÈʽ
¡Ý1²»¿ÉÄÜÈ¡µÈºÅ£®
ËùÒÔ£¬¶ÔÈκÎk£¬P£¨X=k+1£©¡ÙP£¨X=k£©£®
ËùÒÔ£¬µ±k+1£¼£¨n+1£©pʱ£¬P£¨X=k+1£©£¾P£¨X=k£©£®
¼ÇСÓÚ£¨n+1£©pµÄ×î´óÕûÊýΪ[£¨n+1£©p]£¬
Ôòµ±k=[£¨n+1£©p]ʱ£¬P£¨X=k£©È¡×î´óÖµ£®
×ÛÉÏ¿ÉÖª£¬Èç¹û£¨n+1£©pÊÇÕýÕûÊý£¬µ±kÈ¡£¨n+1£©p»ò£¨n+1£©p-1ʱ£¬P£¨X=k£©È¡×î´óÖµ£»
Èç¹û£¨n+1£©p²»ÊÇÕýÕûÊý£¬µ±k=[£¨n+1£©p]ʱ£¬P£¨X=k£©È¡×î´óÖµ£®¡£¨14·Ö£©
¡°¸ÃÉäÊÖÏòÒÒ°ÐÉä»÷Ò»´Î²¢»÷ÖС±ÎªÊ¼þB£¬
ÔòÓÉÌâÒâµÃ£¬
|
Óɸ÷´ÎÉä»÷½á¹û»¥²»Ó°ÏìµÃ
|
¼´
|
½âµÃp1=
4 |
5 |
2 |
3 |
£¨¢ò£©¦ÇµÄËùÓпÉÄÜȡֵΪ0£¬1£¬2£¬3£¬6£®¡£¨4·Ö£©
¼Ç¡°¸ÃÉäÊÖµÚi´ÎÉä»÷»÷ÖÐÄ¿±ê¡±ÎªÊ¼þAi£¨i=1£¬2£¬3£©£¬
ÔòP(¦Ç=0)=P(
. |
A1 |
. |
A2 |
. |
A3 |
2 |
3 |
1 |
27 |
. |
A2 |
. |
A3 |
. |
A1 |
. |
A3 |
. |
A1 |
. |
A2 |
. |
A2 |
. |
A3 |
. |
A1 |
. |
A3 |
. |
A1 |
. |
A2 |
=
2 |
3 |
2 |
3 |
2 |
3 |
2 |
3 |
2 |
3 |
2 |
3 |
2 |
3 |
2 |
9 |
. |
A2 |
2 |
3 |
2 |
3 |
2 |
3 |
4 |
27 |
. |
A3 |
. |
A1 |
. |
A3 |
. |
A1 |
2 |
3 |
2 |
3 |
2 |
3 |
2 |
3 |
8 |
27 |
2 |
3 |
8 |
27 |
ËùÒԦǵķֲ¼ÁÐΪ£º
¦Ç | 0 | 1 | 2 | 3 | 6 | ||||||||||
P |
|
|
|
|
|
£¨¢ó£©¿¼²ì²»µÈʽ
P(X=k+1) |
P(X=k) |
| ||
|
n-k |
k+1 |
p |
1-p |
µÃk¡Ü£¨n+1£©p-1£®
¢ÙÈç¹û£¨n+1£©pÊÇÕýÕûÊý£¬ÄÇô£¨n+1£©p-1Ò²ÊÇÕýÕûÊý£®
´Ëʱ£¬¿ÉÒÔʹ£ºk=£¨n+1£©p-1£¬¼´k+1=£¨n+1£©p£¬
ÇÒP£¨X=k+1£©=P£¨X=k£©£®
Ôòµ±kÈ¡£¨n+1£©p»ò£¨n+1£©p-1ʱ£¬P£¨X=k£©È¡×î´óÖµ£®
¢ÚÈç¹û£¨n+1£©p²»ÊÇÕýÕûÊý£¬ÄÇô²»µÈʽ
P(X=k+1) |
P(X=k) |
ËùÒÔ£¬¶ÔÈκÎk£¬P£¨X=k+1£©¡ÙP£¨X=k£©£®
ËùÒÔ£¬µ±k+1£¼£¨n+1£©pʱ£¬P£¨X=k+1£©£¾P£¨X=k£©£®
¼ÇСÓÚ£¨n+1£©pµÄ×î´óÕûÊýΪ[£¨n+1£©p]£¬
Ôòµ±k=[£¨n+1£©p]ʱ£¬P£¨X=k£©È¡×î´óÖµ£®
×ÛÉÏ¿ÉÖª£¬Èç¹û£¨n+1£©pÊÇÕýÕûÊý£¬µ±kÈ¡£¨n+1£©p»ò£¨n+1£©p-1ʱ£¬P£¨X=k£©È¡×î´óÖµ£»
Èç¹û£¨n+1£©p²»ÊÇÕýÕûÊý£¬µ±k=[£¨n+1£©p]ʱ£¬P£¨X=k£©È¡×î´óÖµ£®¡£¨14·Ö£©
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿