ÌâÄ¿ÄÚÈÝ
10£®¼ÇÎÞÇîÊýÁÐ{an}µÄÇ°nÏîa1£¬a2£¬¡£¬anµÄ×î´óÏîΪAn£¬µÚnÏîÖ®ºóµÄ¸÷Ïîan+1£¬an+2£¬¡µÄ×îСÏîΪBn£¬Áîbn=An-Bn£®£¨1£©ÈôÊýÁÐ{an}µÄͨÏʽΪan=2n2-7n+6£¬Ð´³öb1£¬b2£¬²¢ÇóÊýÁÐ{bn}µÄͨÏʽ£»
£¨2£©ÈôÊýÁÐ{bn}µÄͨÏʽΪbn=1-2n£¬ÅжÏ{an+1-an}ÊÇ·ñµÈ²îÊýÁУ¬ÈôÊÇ£¬Çó³ö¹«²î£»Èô²»ÊÇ£¬Çë˵Ã÷ÀíÓÉ£»
£¨3£©ÈôÊýÁÐ{bn}Ϊ¹«²î´óÓÚÁãµÄµÈ²îÊýÁУ¬ÇóÖ¤£º{an+1-an}ÊÇ·ñΪµÈ²îÊýÁУ®
·ÖÎö £¨1£©ÊýÁÐ{an}µÄͨÏʽΪan=2n2-7n+6£¬a1=1£¬${a}_{n}=2£¨n-\frac{7}{4}£©^{2}$-$\frac{1}{8}$£¬n¡Ý2ʱΪµ¥µ÷µÝÔöÊýÁУ®¿ÉµÃA1=1£¬B1=a2=0£¬b1=1£¬Í¬Àí¿ÉµÃb2=A2-B2=a1-a3=-2£®¿ÉµÃÊýÁÐ{bn}µÄͨÏʽbn=An-Bn=an-an+1=-4n+5£®
£¨2£©ÉèdÊǷǸºÕûÊý£¬ÏÈÖ¤Ã÷£ºbn=-d£¨n=1£¬2£¬3¡£©µÄ³ä·Ö±ØÒªÌõ¼þΪ{an}Êǹ«²îΪdµÄµÈ²îÊýÁУ»¶øÊýÁÐ{bn}µÄͨÏʽΪbn=1-2n£¬¼´¿É{an+1-an}Êǹ«²îΪ2µÈ²îÊýÁУ®
£¨3£©ÓÉÓÚÊýÁÐ{an}µÝÔö£¬¿ÉµÃAn=an£¬Bn=an+1£¬bn=An-Bn=an-an+1=-£¨an+1-an£©£¬¼´¿ÉÖ¤Ã÷£®
½â´ð £¨1£©½â£ºÊýÁÐ{an}µÄͨÏʽΪan=2n2-7n+6£¬a1=1£¬${a}_{n}=2£¨n-\frac{7}{4}£©^{2}$-$\frac{1}{8}$£¬
n¡Ý2ʱΪµ¥µ÷µÝÔöÊýÁУ®
¡àA1=1£¬B1=a2=0£¬
b1=A1-B1=1-0=1£¬
ͬÀí¿ÉµÃb2=A2-B2=a1-a3=-2£®
¡àÊýÁÐ{bn}µÄͨÏʽbn=An-Bn=an-an+1=2n2-7n+6-[2£¨n+1£©2-7£¨n+1£©+6]=-4n+5£»
£¨2£©½â£ºÉèdÊǷǸºÕûÊý£¬ÏÈÖ¤Ã÷£ºbn=-d£¨n=1£¬2£¬3¡£©µÄ³ä·Ö±ØÒªÌõ¼þΪ{an}Êǹ«²îΪdµÄµÈ²îÊýÁУ»
³ä·ÖÐÔ£ºÉèdÊǷǸºÕûÊý£¬Èô{an}Êǹ«²îΪdµÄµÈ²îÊýÁУ¬Ôòan=a1+£¨n-1£©d£¬
¡àAn=an=a1+£¨n-1£©d£¬Bn=an+1=a1+nd£¬
¡àdn=An-Bn=-d£¬£¨n=1£¬2£¬3£¬4¡£©£®
±ØÒªÐÔ£ºÈôbn=An-Bn=-d£¬£¨n=1£¬2£¬3£¬4¡£©£®¼ÙÉèakÊǵÚÒ»¸öʹak-ak-1£¼0µÄÏ
Ôòdk=Ak-Bk=ak-1-Bk¡Ýak-1-ak£¾0£¬ÕâÓëdn=-d¡Ü0Ïàì¶Ü£¬
¹Ê{an}ÊÇÒ»¸ö²»¼õµÄÊýÁУ®
¡àdn=An-Bn=an-an+1=-d£¬¼´ an+1-an=d£¬
¹Ê{an}Êǹ«²îΪdµÄµÈ²îÊýÁУ®
¶øÊýÁÐ{bn}µÄͨÏʽΪbn=1-2n£¬
bn+1-bn=-2£¬
¡à{an+1-an}Êǹ«²îΪ2µÈ²îÊýÁУ®
£¨3£©Ö¤Ã÷£º¡ßÊýÁÐ{an}µÝÔö£¬£¨¿ÉÓ÷´Ö¤·¨Ö¤Ã÷£©£¬
¡àAn=an£¬Bn=an+1£¬
¡àbn=An-Bn=an-an+1=-£¨an+1-an£©£¬
¡ß{an+1-an}ÊǵȲîÊýÁУ¬
¡à{bn}ΪµÈ²îÊýÁУ®
µãÆÀ ±¾Ì⿼²éÁ˵ÝÍÆʽµÄÓ¦ÓᢵȲîÊýÁеĶ¨Òå¼°ÆäͨÏʽ¡¢¡°Ð¶¨Ò塱£¬¿¼²éÁË·ÖÎöÎÊÌâÓë½â¾öÎÊÌâµÄÄÜÁ¦£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÄÑÌ⣮
A£® | $\frac{4}{3}$ | B£® | $\frac{5}{3}$ | C£® | $\sqrt{3}$ | D£® | $\frac{{2\sqrt{3}}}{3}$ |
A£® | a2£¼ab | B£® | -ab£¼-b2 | C£® | $\frac{1}{a}£¼\frac{1}{b}$ | D£® | $\frac{b}{a}£¾\frac{a}{b}$ |
A£® | ¦Ð | B£® | $\frac{4¦Ð}{3}$ | C£® | $\frac{5¦Ð}{3}$ | D£® | 2¦Ð |