题目内容
【题目】在三棱锥P﹣ABC中,AB=1,BC=2,AC,PC,PA,PB,E是线段BC的中点.
(1)求点C到平面APE的距离d;
(2)求二面角P﹣EA﹣B的余弦值.
【答案】(1);(2).
【解析】
(1)建立空间直角坐标系,求出平面的法向量,利用向量的距离公式得解;(2)求出两个平面的法向量,利用向量公式求解.
∵AB2+BC2=AC2,PC2+BC2=PB2,PA2+AB2=PB2,
∴,
过点P作PO⊥平面ABC,垂足为O,易得OP=1,且BC⊥OC,BA⊥OA,
∴四边形ABCO为矩形,
(1)以O为坐标原点,建立如图所示的空间直角坐标系,
则C(1,0,0),E(1,1,0),A(0,2,0),P(0,0,1),
,
设平面APE的法向量为,则,
令x=1,则,
∴;
(2)由(1)知平面APE的法向量为,取平面ABE的一个法向量,
且二面角P﹣EA﹣B为钝角,设其为θ,故.
【题目】某电力公司在工程招标中是根据技术、商务、报价三项评分标准进行综合评分的,按照综合得分的高低进行综合排序,综合排序高者中标.
分值权重表如下:
总分 | 技术 | 商务 | 报价 |
100% | 50% | 10% | 40% |
技术标、商务标基本都是由公司的技术、资质、资信等实力来决定的.报价表则相对灵活,报价标的评分方法是:基准价的基准分是68分,若报价每高于基准价1%,则在基准分的基础上扣0.8分,最低得分48分;若报价每低于基准价1%,则在基准分的基础上加0.8分,最高得分为80分.若报价低于基准价15%以上(不含15%)每再低1%,在80分在基础上扣0.8分.
在某次招标中,若基准价为1000(万元).甲、乙两公司综合得分如下表:
公司 | 技术 | 商务 | 报价 |
甲 | 80分 | 90分 | A甲分 |
乙 | 70分 | 100分 | A乙分 |
甲公司报价为1100(万元),乙公司的报价为800(万元)则甲,乙公司的综合得分,分别是( )
A. 73,75.4B. 73,80C. 74.6,76D. 74.6,75.4