题目内容

(2010•上饶二模)如图,已知P是焦距为上一点,过P的直线与双曲线C的两条渐近线分别交于点P1,P2,且
OP
=
1
3
OP1
+
2
3
OP2
,O
为坐标原点.
(1)试求当S△OP1P2取得最大值时,双曲线C的方程;
(2)设满足条件(1)的双曲线C的两个顶点为A1,A2,直线l过定点D(3,0),且与双曲线交于M,N两点(M不为顶点),求证:直线A1M,A2N的交点的横坐标为定值.
分析:(1)先设P(x0,y0),P1(x1,y1),P2(x2,y2).代入
OP
=
1
3
OP1
+
2
3
OP2
,找到坐标之间的关系,再把S△OP1P2用含三点坐标的式子表示,求范围,根据范围找最大值时对应的a,b,即可得到当S△OP1P2取得最大值时,双曲线C的方程.
(2)先设直线l的方程,M,N点坐标,把直线方程代入(1)中所求双曲线C的方程中,求M,N的纵坐标的和与积,再利用两点式求出A1M,A2M的方程,联立,求交点,再验证交点横坐标是否为定值.
解答:解:(1)设P(x0,y0),P1(x1,y1),P2(x2,y2).由
OP
=
1
3
OP1
+
2
3
OP2
,得
x0=
x1+2x2
3
y0=
y1+2y2
3

∵点P在双曲线
x2
a2
-
y2
b2
=1
上,则
(x1+2x2)2
9a2
-
(y1+2y2)2
9b2
=1

又∵P1,P2在渐近线y=±
b
a
x
上.
x1x2=
9
8
a2
,则y1y2=-
9
8
b2
S△OP1P2=
1
2
|OP1||OP2|sin∠P1OP2=
1
2
OP1
OP2
tan∠P1OP2=
1
2
(x1x2+y1y2)•
2
b
a
1-
b2
a2
=
1
2
×
9
8
(a2-b2)•
2ab
a2-b2
=
9
8
ab

又a2+b2=c2=8,a2+b2≥2ab,S≤
9
2

当且仅当a=b=2时,S有最大值
9
2
.所以双曲线C的方程为:x2-y2=4.
(2)设直线l的方程为x-3=ky,M(x3,y3),N(x4,y4).有
x-3=ky
x2-y2=4

∴(k2-1)y2+6ky+5=0(k2-1≠0).
则∴y3+y4=-
6k
k2-1
y3y4=
5
k2-1

A1M的方程为y=
y3
x3-2
(x-2),A2N
的方程为 y=
y4
x4+2
(x+2)

直线A1M,A2N的交点H的横坐标xH满足:
y3
x3-2
(xH-2)=
y4
x4+2
(xH+2)

化简得:(x4y3+2y3-x3y4+2y4)xH=2x4y3+4y3+2x3y4-4y4
即:[2(y3+y4)+3(y3-y4)]xH=[4ky3y4+6(y3+y4)+4(y3-y4)][-
12k
k2-1
+3(y3-y4)]xH=4[-
4k
k2-1
+(y3-y4)]∴xH=
4
3

故A1M,A2N的交点H在直线x=
4
3
点评:本题灵活运用了直线与双曲线的关系,求最值,以及判断定植.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网