题目内容
16.设函数f(x)=$\frac{ex}{{e}^{x}}$的导数为f'(x)(e为自然对数的底数).(1)求函数f(x)的极大值;
(2)解方程f(f(x))=x;
(3)若存在实数x1,x2(x1≠x2)使得f(x1)=f(x2),求证:f($\frac{{x}_{1}+{x}_{2}}{2}$)<0.
分析 (1)对f(x)求导,f'(x)=0求出极值点,根据单调性求出极大值
(2)构造新函数,利用新函数的导数说明单调性,继而说明方程根的个数.
(3)由题意,f(x1)=f(x2),则$\frac{e{x}_{1}}{{e}^{{x}_{1}}}=\frac{e{x}_{2}}{{e}^{{x}_{2}}}$,不妨设0<x1<x2,构造函数,利用函数单调性证明.
解答 解:(1)函数f(x)得定义域为R,f'(x)=e$\frac{(1-x)}{{e}^{x}}$
当$x∈(-∞,1)\\;\\;\\;时,f'(x)>0$,时,f'(x)>0,f(x)单调递增
当x∈(1,+∞)时,f'(x)<0,f(x)单调递减
则f(x)max=f(1)=1.
(2)f(f(x))=$\frac{ef(x)}{{e}^{f(x)}}=\frac{e\frac{ex}{{e}^{x}}}{e\frac{ex}{{e}^{x}}}=x$,若x=0,显然满足上式.若x≠0,方程等价于${e}^{2-x}={e}^{\frac{ex}{{e}^{x}}}$
故(x-2)ex+ex=0,显然当x<0时,(x-2)ex+ex<0
令g(x)=(x-2)ex+ex(x>0)g'(x)=(x-1)ex+e
g'(x)>0恒成立,故当x>0时原方程由唯一根x=1.
综上,原方程得解为x=0或x=1
(3)由题意,f(x1)=f(x2),则$\frac{e{x}_{1}}{{e}^{{x}_{1}}}=\frac{e{x}_{2}}{{e}^{{x}_{2}}}$,不妨设0<x1<x2,则${x}_{1}{e}^{{x}_{2}}={x}_{2}{e}^{{x}_{1}}$,则x1+lnx2=x2+lnx1,即$\frac{{x}_{2}-{x}_{1}}{ln{x}_{2}-ln{x}_{1}}=1$
f'(x)=e$\frac{(1-x)}{{e}^{x}}$,欲证f'($\frac{{x}_{1}+{x}_{2}}{2}$)<0,只需证$\frac{{x}_{1}+{x}_{2}}{2}>1$
只需证:$\frac{{x}_{2}-{x}_{1}}{ln{x}_{2}-ln{x}_{1}}<\frac{{x}_{1}+{x}_{2}}{2}$,只需证:$\frac{{x}_{2}-{x}_{1}}{{x}_{1}+{x}_{2}}<\frac{ln{x}_{2}-ln{x}_{1}}{2}$
只需证:$\frac{\frac{{x}_{2}}{{x}_{1}}-1}{\frac{{x}_{2}}{{x}_{1}}+1}<\frac{ln\frac{{x}_{2}}{{x}_{1}}}{2}$,令t=$\frac{{x}_{2}}{{x}_{1}}$,h(t)=$\frac{t-1}{t+1}-\frac{1}{2}lnt,t∈(1,+∞)$
h'(t)=$\frac{2}{(t+1)^{2}}-\frac{1}{2t}=\frac{-(t-1)^{2}}{2t(t+1)^{2}}<0$,当t∈(1,+∞)恒成立.故h(t)在t∈(1,+∞)单调递减,故h(t)<h(1)=0,所以原命题成立.
点评 本题主要考查了函数导数在求极值中得应用和证明题中得应用,属于难度较大的题型,高考经常涉及.
A. | 12π | B. | 24π | C. | 144π | D. | 48π |
A. | $\frac{1}{4}$ | B. | $\frac{1}{2}$ | C. | 1 | D. | 2 |