题目内容

5.在直三棱柱ABC-A′B′C′中,底面ABC是边长为2的正三角形,D′是棱A′C′的中点,且AA′=2$\sqrt{2}$.
(Ⅰ)证明:BC′∥平面AB′D′;
(Ⅱ)棱CC′上是否存在一点M,使A′M⊥平面AB′D′,若存在,求出CM的长;若不存在,说明理由.

分析 (Ⅰ) 连结A′B交AB′于点E,连结D′E,证明D′E∥BC′,利用在与平面平行的判定定理证明BC′∥平面AB′D′.
(Ⅱ) 作A′M⊥AD′,交CC′于M,通过证明△A′AD∽△C′A′M,求出CM的长,得到结果.

解答 解:(Ⅰ) 连结A′B交AB′于点E,连结D′E,
∵四边形A′ABB′为矩形,∴E为A′B的中点,
又∵D′是棱A′C′的中点
∴D′E∥BC′
∵D′E?平面AB′D′BC′?平面AB′D′
∴BC′∥平面AB′D′…(6分)
(Ⅱ) 作A′M⊥AD′,交CC′于M
∵D′是棱A′C′的中点
∴B′D′⊥A′C′
∴B′D′⊥平面A′ACC′
∴B′D′⊥A′M
∴A′M⊥平面AB′D′
此时△A′AD∽△C′A′M
∴$\frac{A'A}{A'D'}=\frac{A'C'}{C'M}$,即$C'M=\frac{A'C'•A'D'}{A'A}=\frac{2×1}{{2\sqrt{2}}}=\frac{{\sqrt{2}}}{2}$,∴$CM=\frac{{3\sqrt{2}}}{2}$
即当$CM=\frac{{3\sqrt{2}}}{2}$时,A′M⊥平面AB′D′.…(12分)

点评 本题考查空间点线面距离的求法,直线与平面平行的判定定理的应用,考查空间想象能力以及计算能力.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网