题目内容

若a,b,c是不全相等的实数,求证:a2+b2+c2>ab+bc+ca.

证明过程如下:

∵a、b、c∈R,∴a2+b2≥2ab,

b2+c2≥2bc,c2+a2≥2ac,

又∵a,b,c不全相等,

∴以上三式至少有一个“=”不成立,

∴将以上三式相加得2(a2+b2+c2)>2(ab+bc+ac),

∴a2+b2+c2>ab+bc+ca.

此证法是(  )

(A)分析法                      (B)综合法

(C)分析法与综合法并用      (D)反证法

B.由已知条件入手证明结论成立,满足综合法的定义.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网