题目内容
若a、b、c是不全相等的正数,给出下列判断
①(a-b)2+(b-c)2+(c-a)2≠0;
②a>b与a<b及a=b中至少有一个成立;
③a≠c,b≠c,a≠b不能同时成立.
其中判断正确的个数是( )
①(a-b)2+(b-c)2+(c-a)2≠0;
②a>b与a<b及a=b中至少有一个成立;
③a≠c,b≠c,a≠b不能同时成立.
其中判断正确的个数是( )
分析:利用反证法可证明①的正确性;
对②利用反证法证明即可;
对③,采用例举反例的方法解决.
对②利用反证法证明即可;
对③,采用例举反例的方法解决.
解答:解:对①,假设(a-b)2+(b-c)2+(c-a)2=0⇒a=b=c与已知a、b、c是不全相等的正数矛盾,∴①正确;
对②,假设都不成立,这样的数a、b不存在,∴②正确;
对③,举例a=1,b=2,c=3,a≠c,b≠c,a≠b能同时成立,∴③不正确.
故选C
对②,假设都不成立,这样的数a、b不存在,∴②正确;
对③,举例a=1,b=2,c=3,a≠c,b≠c,a≠b能同时成立,∴③不正确.
故选C
点评:本题借助考查命题的真假判断,考查了反证法.
练习册系列答案
相关题目