题目内容

4.定义在[1,+∞)上的函数f(x)满足:(1)f(2x)=2f(x);(2)当2≤x≤4时,f(x)=1-|x-3|.则集合A={x|f(x)=f(61)}中的最小元素是(  )
A.13B.11C.9D.6

分析 根据各分段的函数解析式可以归纳出:x∈[2n,2n+1]时,f(x)=2n-1-|x-3•2n-1|,再结合函数图象解出f(x)=f(61)的最小的x.

解答 解:因为x∈[2,4]时,f(x)=1-|x-3|,其值域为[0,1],且先增后减,所以,
x∈[4,8]时,f(x)=2f($\frac{x}{2}$)=2[1-|$\frac{x}{2}$-3|]=2-|x-6|,值域为[0,2],
x∈[8,16]时,f(x)=2f($\frac{x}{2}$)=2[2-|$\frac{x}{2}$-6|]=4-|x-12|,值域为[0,4],
x∈[16,32]时,f(x)=2f($\frac{x}{2}$)=2[4-|$\frac{x}{2}$-12|]=8-|x-24|,值域为[0,8],
x∈[32,64]时,f(x)=2f($\frac{x}{2}$)=2[8-|$\frac{x}{2}$-24|]=16-|x-48|,值域为[0,16],
…,
一般地,x∈[2n,2n+1]时,f(x)=2n-1-|x-3•2n-1|,值域为[0,2n-1].
而61∈[25,26],即n=5,所以,f(61)=16-|61-48|=3,
由于f(x)=f(61)=3,要使x最小,可设x∈[3,8],
即令4-|x-12|=3,解得x=11或13,
所以,满足f(x)=f(61)的最小x的值为11.
故选:B.

点评 本题主要考查了抽象函数的应用,涉及分段函数解析式的求法和函数值的确定,运用了归纳推理题的解题思想,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网