题目内容
【题目】在如图所示的几何体中,平面平面,四边形和四边形都是正方形,且边长为,是的中点.
(1)求证:直线平面;
(2)求二面角的大小.
【答案】(1)见解析;(2).
【解析】试题分析:(1)连结交于,根据平行四边形性质得是中点,再根据三角形中位线性质得,最后根据线面平行判定定理得结论,(2)根据条件建立空间直角坐标系,设立各点坐标,利用方程组解各面法向量,根据向量数量积求夹角,最后根据二面角与向量夹角相等或互补关系求二面角.
试题解析:(1)∵且,
与交于点,与交于点
∴平面平面,∴几何体是三棱柱
又平面平面,,∴平面,故几何体是直三棱柱
(1)四边形和四边形都是正方形,所以且,所以四边形为矩形;于是,连结交于,连结,是中点,又是的中点,故是三角形D的中位线,,注意到在平面外,在平面内,∴直线平面
(2)由于平面 平面,,∴平面,所以.于是,,两两垂直.以,,所在直线分别为,,轴建立空间直角坐标系,因正方形边长为,且为中点,所以,,,
于是,,设平面的法向量为
则,解之得,同理可得平面的法向量,∴
记二面角的大小为,依题意知,为锐角,,
即求二面角的大小为
【题目】交管部门为宣传新交规举办交通知识问答活动,随机对该市岁的人群抽样了人,回答问题统计结果如图表所示:
分组 | 回答正确的人数 | 回答正确的人数占本组的频率 | |
第组 | |||
第组 | |||
第组 | |||
第组 | |||
第组 |
(1)分别求出,,,的值;
(2)从第,,组回答正确的人中用分层抽样方法抽取人,则第,,组每组应各抽取多少人?
(3)在(2)的前提下,决定在所抽取的人中随机抽取人颁发幸运奖,求:所抽取的人中至少有一个第组的人的概率.
【题目】某二手车交易市场对某型号二手汽车的使用年数与销售价格(单位:万元/辆)进行整理,得到如下的对应数据:
使用年数 | 2 | 4 | 6 | 8 | 10 |
售价 | 16 | 13 | 9.5 | 7 | 4.5 |
(1)试求关于的回归直线方程;(参考公式:,.)
(2)已知每辆该型号汽车的收购价格为万元,根据(1)中所求的回归方程,预测为何值时,销售一辆该型号汽车所获得的利润最大?