题目内容
正项数列{an}的前项和满足:-(n2+n-1)Sn-(n2+n)=0.
(1)求数列{an}的通项公式an;
(2)令bn=,数列{bn}的前n项和为Tn.证明:对于任意的n∈N*,都有Tn<.
(1)求数列{an}的通项公式an;
(2)令bn=,数列{bn}的前n项和为Tn.证明:对于任意的n∈N*,都有Tn<.
(1)an=2n(2)见解析
(1)解:由-(n2+n-1)Sn-(n2+n)=0,
得[Sn-(n2+n)](Sn+1)=0.
由于{an}是正项数列,所以Sn>0,Sn=n2+n.
于是a1=S1=2,n≥2时,an=Sn-Sn-1=n2+n-(n-1)2-(n-1)=2n.
综上,数列{an}的通项an=2n.
(2)证明:由于an=2n,bn=,则bn=.
Tn=
==.
故对于任意的n∈N*,都有Tn<.
得[Sn-(n2+n)](Sn+1)=0.
由于{an}是正项数列,所以Sn>0,Sn=n2+n.
于是a1=S1=2,n≥2时,an=Sn-Sn-1=n2+n-(n-1)2-(n-1)=2n.
综上,数列{an}的通项an=2n.
(2)证明:由于an=2n,bn=,则bn=.
Tn=
==.
故对于任意的n∈N*,都有Tn<.
练习册系列答案
相关题目