题目内容
设{an}是公比不为1的等比数列,其前n项和为Sn,且a5,a3,a4成等差数列.
(1)求数列{an}的公比;
(2)证明:对任意k∈N+,Sk+2,Sk,Sk+1成等差数列.
(1)求数列{an}的公比;
(2)证明:对任意k∈N+,Sk+2,Sk,Sk+1成等差数列.
(1)q=-2.(2)见解析
1)解:设公比为q,则2a3=a5+a4,得2a1q2=a1q4+a1q3.又q≠0,a1≠0,q≠1,∴q=-2.
(2)证明:Sk+2+Sk+1-2Sk=(Sk+2-Sk)+(Sk+1-Sk)=ak+1+ak+2+ak+1=2ak+1+ak+1·(-2)=0,∴Sk+2,Sk,Sk+1成等差数列.
(2)证明:Sk+2+Sk+1-2Sk=(Sk+2-Sk)+(Sk+1-Sk)=ak+1+ak+2+ak+1=2ak+1+ak+1·(-2)=0,∴Sk+2,Sk,Sk+1成等差数列.
练习册系列答案
相关题目