题目内容

【题目】一则“清华大学要求从 2017级学生开始,游泳达到一定标准才能毕业”的消息在体育界和教育界引起了巨大反响.其实,已有不少高校将游泳列为必修内容.

某中学拟在高一-下学期开设游泳选修课,为了了解高--学生喜欢游泳是否与性别有关,该学校对100名高一新生进行了问卷调查,得到如下列联表:

喜欢游泳

不喜欢游泳

合计

男生

40

女生

30

合计

已知在这100人中随机抽取1人,抽到喜欢游泳的学生的概率为.

(1).请将上述列联表补充完整,并判断是否可以在犯错误的概率不超过0.001的前提下认为喜欢游泳与性别有关.

(2)已知在被调查的学生中有6名来自高一(1) 班,其中4名喜欢游泳,现从这6名学生中随机抽取2人,求恰有1人喜欢游泳的概率.

附:

0.10

0.050

0.025

0.010

0.005

0.001

2.706

/td>

3.841

5.024

6.635

7.879

10.828

【答案】(1)可以(2)

【解析】

分析:(1)根据题意计算喜欢游泳的学生人数,求出女生、男生多少人,完善列联表,再计算观测值,对照临界值表即可得出结论;

(2)设“恰有一人喜欢游泳”为事件A,设4名喜欢游泳的学生为,不喜欢游泳的学生为,通过列举法即可得到答案.

详解:(1)解:根据条件可知喜欢游泳的人数为

完成列联表:

喜欢游泳

不喜欢游泳

合计

男生

40

10

50

女生

20

30

50

合计

60

40

100

根据表中数据,计算

可以在犯错误的概率不超过0.001的前提下认为喜欢游泳与性别有关.

(2)解:设“恰有一人喜欢游泳”为事件A,设4名喜欢游泳的学生为

不喜欢游泳的学生为,基本事件总数有15种:

其中恰有一人喜欢游泳的基本事件有8种:

所以

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网