题目内容
【题目】已知函数在处取到极值为.
(1)求函数的单调区间;
(2)若不等式在上恒成立,求实数k的取值范围.
【答案】(1)单调递减区间是,单调递增区间是;(2).
【解析】
(1)求出函数的导数,结合题意得到关于a,b的方程,求出a,b的值,求出函数的单调区间即可;
(2)问题等价于在上恒成立,令,则只需即可,根据函数的单调性判断求解即可.
解:(1)由已知定义域为,
,
由,又,得,
,所以,
所以,又.
由得:x>2;由得:x<0或0<x<2.
故f(x)的单调递减区间是;单调递增区间是.
(2)问题等价于在x∈上恒成立,
令,
则只需即可.
,
令,
则.
所以在上单调递增,
又,,
所以有唯一的零点,
在上单调递减,在上单调递增.
因为,两边同时取自然对数,则有,
即.
构造函数,则,
所以函数在上单调递增,
又,所以,即.
所以,即,
于是实数k的取值范围是.
【题目】某市为广泛开展垃圾分类的宣传教育和倡导工作,使市民树立垃圾分类的环保意识,学会垃圾分类的知识,特举办了“垃圾分类知识竞赛".据统计,在为期1个月的活动中,共有两万人次参与网络答题.市文明实践中心随机抽取100名参与该活动的市民,以他们单次答题得分作为样本进行分析,由此得到如图所示的频率分布直方图:
(1)求图中a的值及参与该活动的市民单次挑战得分的平均成绩(同一组中数据用该组区间中点值作代表);
(2)若垃圾分类答题挑战赛得分落在区间之外,则可获得一等奖奖励,其中,s分别为样本平均数和样本标准差,计算可得,若某人的答题得分为96分,试判断此人是否获得一等奖;
(3)为扩大本次“垃圾分类知识竞赛”活动的影响力,市文明实践中心再次组织市民组队参场有奖知识竞赛,竞赛共分五轮进行,已知“光速队”与“超能队”五轮的成绩如下表:
成绩 | 第一轮 | 第二轮 | 第三轮 | 第四轮 | 第五轮 |
“光速队” | 93 | 98 | 94 | 95 | 90 |
“超能队” | 93 | 96 | 97 | 94 | 90 |
①分别求“光速队”与“超能队”五轮成绩的平均数和方差;
②以上述数据为依据,你认为"光速队”与“超能队”的现场有奖知识竞赛成绩谁更稳定?
【题目】已知x与y之间的几组数据如表:
x | 1 | 2 | 3 | 4 |
y | 1 | m | n | 4 |
如表数据中y的平均值为2.5,若某同学对m赋了三个值分别为1.5,2,2.5,得到三条线性回归直线方程分别为,,,对应的相关系数分别为,,,下列结论中错误的是( )
参考公式:线性回归方程中,其中,.相关系数.
A.三条回归直线有共同交点B.相关系数中,最大
C.D.