题目内容

精英家教网如图,已知三棱柱ABC-A1B1C1的侧棱与底面垂直,AA1=AB=AC=1,AB⊥AC,M、N分别是
CC1、BC的中点,点P在A1B1上,且满足
.
A1P
.
A1B1
(λ∈R).
(1)证明:PN⊥AM;
(2)当λ取何值时,直线PN与平面ABC所成的角θ最大?并求该最大角的正切值;
(3)若平面PMN与平面ABC所成的二面角为45°,试确定点P的位置.
分析:(1)以AB,AC,AA1分别为x,y,z轴,建立空间直角坐标系A-xyz,求出各点的坐标及对应向量的坐标,易判断
.
PN
.
AM
=0,即PN⊥AM;
(2)设出平面ABC的一个法向量,我们易表达出sinθ,然后利用正弦函数的单调性及正切函数的单调性的关系,求出满足条件的λ值,进而求出此时θ的正线值;
(3)平面PMN与平面ABC所成的二面角为45°,则平面PMN与平面ABC法向量的夹角为45°,代入向量夹角公式,可以构造一个关于λ的方程,解方程即可求出对应λ值,进而确定出满足条件的点P的位置.
解答:精英家教网解:(1)证明:如图,以AB,AC,AA1分别为x,y,z轴,建立空间直角坐标系A-xyz.
则P(λ,0,1),N(
1
2
1
2
,0),M(0,1,
1
2
),(2分)
从而
.
PN
=(
1
2
-λ,
1
2
,-1),
.
AM
=(0,1,
1
2
),
.
PN
.
AM
=(
1
2
-λ)×0+
1
2
×1-1×
1
2
=0,
所以PN⊥AM.(3分)
(2)平面ABC的一个法向量为
n
=(0,0,1),
则sinθ=|sin(
π
2
-<
.
PN
n
>)|=|cos<
.
PN
n
>|
=|
 
PN
n
 
|
PN
|
•|
n
|
|=
1
(λ-
1
2
 2+
5
4
(※).(5分)
而θ∈[0,
π
2
],当θ最大时,sinθ最大,tanθ最大,θ=
π
2
除外,
由(※)式,当λ=
1
2
时,(sinθ)max=
2
5
5
,(tanθ)max=2.(6分)
(3)平面ABC的一个法向量为
n
=
.
AA 1
=(0,0,1).
设平面PMN的一个法向量为
m
=(x,y,z),
由(1)得
.
MP
=(λ,-1,
1
2
).
m
NP
=0
m
MP
=0
(λ-
1
2
)x-
1
2
y+z=0
λx-y+
1
2
z=0.

解得
y=
2λ+1
3
x
z=
2(1-λ)
3
x.
令x=3,得
m
=(3,2λ+1,2(1-λ))

∵平面PMN与平面ABC所成的二面角为45°,
∴|cos<
m
n
>|=|
m
n
|
m
|•|
n
|
|=
|2(1-λ)|
9+(2λ+1)2+4(1-λ)2
=
2
2

解得λ=-
1
2
.(11分)
故点P在B1A1的延长线上,且|A1P|=
1
2
.(12分)
点评:本题考查的知识点是向量评议表述线线的垂直、平等关系,用空间向量求直线与平面的夹角,用空间向量求平面间的夹角,其中熟练掌握向量夹角公式是解答此类问题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网