题目内容
【题目】(本题满分12分)某工厂有25周岁以上(含25周岁)工人300名,25周岁以下工人200名.为研究工人的日平均生产量是否与年龄有关.现采用分层抽样的方法,从中抽取了100名工人,先统计了他们某月的日平均生产件数,然后按工人年龄在“25周岁以上(含25周岁)”和“25周岁以下”分为两组,再将两组工人的日平均生产件数分成5组:,,,,分别加以统计,得到如图所示的频率分布直方图.
(Ⅰ)从样本中日平均生产件数不足60件的工人中随机抽取2人,求至少抽到一名“25周岁以下组”工人的频率.
(Ⅱ)规定日平均生产件数不少于80件者为“生产能手”,请你根据已知条件完成的列联表,并判断是否有的把握认为“生产能手与工人所在的年龄组有关”?
附表:
P() | 0.100 | 0.010 | 0.001 |
k | 2.706 | 6.635 | 10.828 |
,(其中)
【答案】(1);(2)没有.
【解析】
试题(1)首先根据分层抽样比计算25周岁以上组工人60名,25周岁以下组工人40名,然后根据频率分布直方图计算样本中日平均生产件数不足60件的工人中两组的人数=样本容量频率(小矩形的面积)然后进行标记,并列举所有抽取两名工人的基本事件的个数和至少有1名“25周岁以下组”工人的可能结果,并根据古典概型计算概率;
(2)首先计算两组中生产能手的人数,其他就是非生产能手,并填写列联表,根据公式计算,和表格中的比较大小,并得到结论.
试题解析:解:(1)由已知得,样本中有25周岁以上组工人60名,25周岁以下组工人40名.
所以样本中日平均生产件数不足60件的工人中,25周岁以上组工人有(人),记为,,;25周岁以下组工人有(人),记为,.
从中随机抽取2名工人,所有的可能结果共有10种,它们是:,,,,,,,,,.
其中,至少1名“25周岁以下组”工人的可能结果共有7种,它们是,,,,,,,故所求的概率.
(2)由频率分布直方图可知,在抽取的100名工人中,“25周岁以上组”中的生产能手有(人),“25周岁以下组”中的生产能手有(人),据此可得列联表如下:
生产能手 | 非生产能手 | 合计 | |
25周岁以上组 | 15 | 45 | 60 |
25周岁以下组 | 15 | 25 | 40 |
合计 | 30 | 70 | 100 |
所以得.
因为1.79<2.706,所以没有90%的把握认为“生产能手与工人所在的年龄组有关”.