题目内容

(2011•西安模拟)在正项等差数列{an}中,对任意的n∈N*都有a1+a2+…+an=
12
anan+1

(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设数列{bn}满足bn=2an,其前n项和为Sn,求证;对任意的n∈N*,Sn-bn+1均为定植.
分析:(Ⅰ)在正项等差数列{an}中,对任意的n∈N*都有a1+a2+…+an=
1
2
anan+1
,令n=1,得a2=2.令n=2,得d=1.由此能求出数列{an}的通项公式.
(Ⅱ)由an=n,bn=2an=2n,知Sn=2+22+…+2n=2n+1-2.故Sn-bn+1=(2n+1-2)-2n+1=-2,由此能够证明对任意的n∈N*,Sn-bn+1均为定值-2.
解答:(Ⅰ)解:在正项等差数列{an}中,
对任意的n∈N*都有a1+a2+…+an=
1
2
anan+1

令n=1,得a1=
1
2
a1a2

∵a1>0,
∴a2=2.
令n=2,得a1+a2=
1
2
a2a3

即a1+2=a3=a1+2d,
故d=1.
∴an=2+(n-2)×1=n.
(Ⅱ)证明:∵an=n,bn=2an=2n
∴Sn=2+22+…+2n
=
2(1-2n)
1-2

=2n+1-2.
故Sn-bn+1=(2n+1-2)-2n+1=-2,
∴对任意的n∈N*,Sn-bn+1均为定值-2.
点评:本题考查数列的通项公式的求法和证明对任意的n∈N*,Sn-bn+1均为定值.解题时要认真审题,注意挖掘题设中的隐含条件,合理地进行等价转化.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网